224. Results Related to Closed Images of M-Spaces. I

By Kiiti MORITA*) and Thomas RISHEL**)

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1971)

1. Introduction. In 1969, J. Nagata began a discussion of characterizations of images of M-spaces under various continuous maps (see, for instance [4] and [5]). Other images of M-spaces have been characterized by Wicke [7], Chiba [1] and by Rishel [6]. One such characterization which has not yet been carried out is that of closed images of M-spaces. It is the purpose of this paper to demonstrate that characterization.

In this paper, all maps are continuous and onto; the symbol "N" will refer to the natural numbers. All spaces will be considered to be T_1 -spaces.

2. Preliminaries about covers.

Definition 2.1. A system $\{F_{\alpha} : \alpha \in \Omega\}$ of closed sets from a space X is said to be *hereditarily closure preserving* if and only if: for any system $\{M_{\alpha} : \alpha \in \Omega\}$ of closed sets in X such that $M_{\alpha} \subset F_{\alpha}$ for every $\alpha \in \Omega$, $\cup \{M_{\alpha} : \alpha \in \Omega\} = \operatorname{Cl} [\cup \{M_{\alpha} : \alpha \in \Omega\}].$

Definition 2.2. A family $\{B_n : n \in N\}$ of sets in a space X is said to form a *q*-sequence at $x \in X$ if and only if:

(a) $x \in B_n$ for every $n \in N$,

(b) for every point-sequence $\{x_n\}$ such that $x_n \in B_n$ for every $n \in N$, $\{x_n\}$ clusters.

Definition 2.3. A sequence of closed covers $\{\mathcal{A}_n\}$ of a space X is said to be almost q-refining if and only if for any point $x \in X$, any system of sets $\{B_n\}$, such that $B_n \in \mathcal{A}_n$ for all $n \in N$ and $x \in B_n$ for all $n \in N$, is either hereditarily closure preserving or else forms a q-sequence at x.

Morita [3] originally defined *M*-spaces.

Definition 2.4. A space X is said to be an *M*-space if and only if there exists a normal sequence of open covers $\{U_1, U_2, \dots\}$ of X satisfying

(1) every point-sequence of the form $\{x_n\}$, where $x_n \in St(x, U_n)$ for all *n* and for fixed $x \in X$, has a cluster point.

Definition 2.5 (Nagata [5]). A space Y is quasi-k if and only if, given $F \subset Y$, F is closed whenever $F \cap K$ is relatively closed in K for every

^{*)} Tokyo University of Education.

^{**} Dalhousie University. This author's work was begun at Dalhousie University and completed at Tokyo University of Education under Canadian Research Council Grant A-3999.

Suppl.]

countably compact $K \subset Y$.

3. Characterization. We now prove our main result.

Theorem 3.1. Let Y be a regular space. Y is the closed image of a regular M-space X if and only if Y has the following conditions:

- (a) Y is quasi-k;
- (b) there exists in Y an almost q-refining sequence $\{\mathcal{F}_n\}$ of hereditarily closure preserving closed covers such that every point $y \in Y$ has a q-sequence $\{A_n\}$ with $A_n \in \mathcal{F}_n$ for every $n \in N$.

(i) Proof of the "if" part.

Let $\mathcal{F}_i = \{F_{i\alpha} : \alpha \in \Omega_i\}, i \in \mathbb{N}$. Let $B = \{\alpha = (\alpha_1, \alpha_2, \cdots) : \{F_{i\alpha_i}\}$ is a q-sequence at some $y \in Y$, and $F_{i\alpha_i} \in \mathcal{F}_i$ for all $i \in \mathbb{N}$. Topologize B as a subspace of a Baire metric space. A neighbourhood of $\alpha = (\alpha_1, \alpha_2, \cdots) \in B$ will have the form

 $B(\alpha_1, \dots, \alpha_n) = \{\beta \in B : \beta_i = \alpha_i \text{ for all } i \text{ with } 1 \le i \le n\}.$ Take a subspace X of $B \times Y$ as follows:

$$X = \left\{ (\alpha, y) : \alpha = (\alpha_1, \alpha_2, \cdots) \in B, y \in \bigcap_{i=1}^{\infty} F_{i\alpha_i} \right\}.$$

Since Y is regular, so is X.

Define a map $\varphi: X \rightarrow B$ by

$$\varphi(\alpha, y) = \alpha$$
, where $y \in \bigcap_{i=1}^{\infty} F_{i\alpha_i}$.

Let C be any subset of X, and let $\alpha \in \operatorname{Cl} \varphi(C)$.

Let $(\beta^{(n)}, y_n) \in C \cap B(\alpha_1, \dots, \alpha_n) \times Y$, $n \in N$. Since $y_n \in F_{n\alpha_n}$, $n \in N$, and $\{F_{i\alpha_i}\}$ is a q-sequence, $\{y_n\}$ has a cluster point y_0 . Then $(\alpha, y_0) \in Cl C$. Hence φ is a quasi-perfect map since $\varphi^{-1}(\alpha) = \{\alpha\} \times \left[\bigcap_{i=1}^{\infty} F_{i\alpha_i}\right]$ is countably compact for each $\alpha \in B$. Thus X is an M-space.

Now define a map $f: X \to Y$ by $f(\alpha, y) = y$. Take $A \subset X$; assume f(A) not closed. By hypothesis (a), there exists a countably compact set $K \subset Y$ such that $f(A) \cap K$ is not closed in K. So there exists a point $y_0 \in K$ such that $y_0 \in \operatorname{Cl}[f(A) \cap K] - f(A)$.

Now, $A = \bigcup \{A \cap [B(\lambda) \times Y] : \lambda \in \Omega_1\}$, since $B = \bigcup [B(\lambda) : \lambda \in \Omega_1]$ and $A \subset X \subset B \times Y$. Then we have

 $f(A) = \bigcup \{ f(A \cap B(\lambda) \times Y) : \lambda \in \Omega_1 \},\$

 $f(A) \cap K = \bigcup \{ f(A \cap B(\lambda) \times Y) \cap K \colon \lambda \in \Omega_1 \}.$

Note that $f(A \cap B(\lambda) \times Y) \subset F_{1\lambda}$ and $\{F_{1\lambda} : \lambda \in \Omega_1\}$ is hereditarily closure preserving. So there exists an $\alpha_1 \in \Omega_1$ such that

 $y_0 \in \operatorname{Cl} [f(A \cap B(\alpha_1) \times Y) \cap K].$

Assume that there exists a $k \in N$, $\alpha_k \in \Omega_k$ such that $y_0 \in \operatorname{Cl} \{f[A \cap B(\alpha_1, \dots, \alpha_k) \times Y] \cap K\}$. Call

 $f[A \cap B(\alpha_1, \cdots, \alpha_k) \times Y] = C_k(\alpha_1, \cdots, \alpha_k),$

 $f[A \cap B(\alpha_1, \cdots, \alpha_k, \lambda) \times Y] = C_k(\alpha_1, \cdots, \alpha_k, \lambda).$

Note $C_k(\alpha_1, \dots, \alpha_k) = \bigcup \{C_k(\alpha_1, \dots, \alpha_k, \lambda) : \lambda \in \Omega_{k+1}\}, C_k(\alpha_1, \dots, \alpha_k, \lambda) \subset F_{(k+1)\lambda}$ and $\{F_{(k+1)\lambda} : \lambda \in \Omega_{k+1}\}$ is hereditarily closure preserving. Now

 $C_k(\alpha_1, \dots, \alpha_k) \cap K = \bigcup \{ C_k(\alpha_1, \dots, \alpha_k, \lambda) \cap K : \lambda \in \Omega_{k+1} \}.$ Hence there exists an α_{k+1} such that

> $y_0 \in \operatorname{Cl} C_{k+1}(\alpha_1, \cdots, \alpha_{k+1}) \cap K$ = Cl { $f[A \cap B(\alpha_1, \cdots, \alpha_k, \alpha_{k+1}) \times Y] \cap K$ }.

Thus, by induction, for any $n \in N$,

 $y_0 \in \operatorname{Cl} (C_n(\alpha_1, \cdots, \alpha_n) \cap K).$

Next note that $C_n(\alpha_1, \dots, \alpha_n) \subset \bigcap_{i=1}^n F_{i\alpha_i} \subset F_{n\alpha_n}$. If we can show that $\{F_{i\alpha_i}: i \in N\}$ is not hereditarily closure preserving, it will then form a q-sequence at y_0 . Now let us abbreviate $C_k(\alpha_1, \dots, \alpha_k)$ to $C_k(\alpha)$, where $\alpha = (\alpha_1, \alpha_2, \dots)$. Since $y_0 \in \text{Cl}(C_1(\alpha) \cap K)$, there exists y_1 such that $y_1 \in C_1(\alpha) \cap K$. Further, $y_1 \neq y_0$ since $y_0 \notin f(A)$.

The space Y is T_1 , so a neighborhood $V_1(y_0)$ of y_0 exists such that $y_1 \notin V_1(y_0)$. Now $y_0 \in \operatorname{Cl} [C_2(\alpha) \cap K] \cap V_1(y_0) \subset \operatorname{Cl} [C_2(\alpha) \cap K \cap V_1(y_0)]$. So there exists $y_2 \neq y_0$ such that $y_2 \in C_2(\alpha) \cap K \cap V_1(y_0)$. Then $V_2(y_0)$ exists such that $y_2 \notin V_2(y_0)$, $V_2(y_0) \subset V_1(y_0)$. By induction, there exists $y_n \in C_n(\alpha) \cap K \cap V_{n-1}(y_0)$ such that $y_n \neq y_0$, $y_n \notin V_n(y_0)$, $V_n(y_0) \subset V_{n-1}(y_0)$.

If some y_k is a cluster point of the sequence $\{y_n\}$, then y_k is also a cluster point of the sequence $\{y_n: n > k\}$ and hence $\{F_{n\alpha_n}: n > k\}$ is not hereditarily closure preserving. If no y_n is a cluster point of the sequence $\{y_n\}, \{F_{i\alpha_i}: i \in N\}$ is not hereditarily closure preserving, since $\{y_n\} \subset K$. Thus in any case $\{F_{i\alpha_i}: i \in N\}$ is not hereditarily closure preserving, so it forms a q-sequence at y_0 ,

$$y_0 \in \bigcap_{n=1}^{\infty} \operatorname{Cl} (C_n(\alpha) \cap K) \subset \bigcap_{i=1}^{\infty} F_{i\alpha_i}, \text{ and } \alpha \in B.$$

We shall now prove that $(\alpha, y_0) \in \operatorname{Cl} A$. Any neighborhood of (α, y_0) has the form

 $[B(\alpha_1, \cdots, \alpha_n) \times V(y_0)] \cap X$

where $V(y_0)$ is a neighborhood of y_0 in Y. Note that

 $V(y_0) \cap C_n(\alpha) \neq \emptyset$ for every $n \in N$,

so $\emptyset \neq f^{-1}(V(y_0)) \cap [A \cap B(\alpha_1, \dots, \alpha_n) \times Y] \subset [B(\alpha_1, \dots, \alpha_n) \times V(y_0)] \cap A$. The fact that the latter set is not empty implies that $(\alpha, y_0) \in Cl A$. Since $f(\alpha, y_0) = y_0$ and $y_0 \notin f(A), (\alpha, y_0) \notin A$. Thus f(A) nonclosed implies A nonclosed. So the map f is closed.

(ii) Proof of the "only if" part.

Let X be $M; f: X \rightarrow Y$ a closed map. Nagata [5] has shown that (a) holds.

So let $\{\mathcal{U}_n\}$ be a normal sequence of locally finite open covers of X satisfying (1) of Definition 2.4. Put $\mathcal{F}_n = \{\operatorname{Cl} U : U \in \mathcal{U}_n\}$. Then it is easy to see that $\{f(F_n)\}$ forms a family of hereditarily closure preserving closed covers of Y. It remains to show that $\{f(\mathcal{F}_n)\}$ forms an almost q-refining sequence.

Suppose $y \in f(A_n)$, $A_n \in \mathcal{F}_n$, $n \in N$, and that $\{f(A_n)\}$ is not heredi-

1006

[Vol. 47,

Suppl.]

tarily closure preserving. Then $\{A_n\}$ is not hereditarily closure preserving. Hence a family $\{K_n\}$ of closed sets exists such that

$$K_n \subset A_n, \operatorname{Cl}\left(\bigcup_{n=1}^{\infty} K_n\right) - \bigcup_{n=1}^{\infty} K_n \neq \emptyset.$$

Let $x_0 \in \operatorname{Cl}\left(\bigcup_{n=1}^{\infty} K_n\right) - \bigcup_{n=1}^{\infty} K_n$. Then St (x_0, \mathcal{U}_i) intersects infinitely many K_n , since otherwise we would have

 $x_0 \in \operatorname{Cl} \Bigl(igcup_{i=1}^m K_i \Bigr) = igcup_{i=1}^m K_i \qquad ext{for some } m \in N.$

Hence an increasing sequence $\{n_i\}$ of natural numbers exists such that $\operatorname{St}(x_0, \mathcal{U}_i) \cap K_{n_i} \neq \emptyset, \quad i \in N.$

Let $x_n \in A_n = \operatorname{Cl} U_n$ for $U_n \in \mathcal{U}_n$ and $n \in N$. Since $K_{n_i} \subset A_{n_i}$, we have St $(x_0, \mathcal{U}_i) \cap \operatorname{Cl} U_{n_i} \supset \operatorname{St} (x_0, \mathcal{U}_i) \cap K_{n_i} \neq \emptyset$. Thus St $(x_0, \mathcal{U}_i) \cap U_{n_i} \neq \emptyset$ and hence

 $U_{n_i} \subset \operatorname{St} \left(\operatorname{St} \left(x_0, \mathcal{U}_i \right), \mathcal{U}_{n_i} \right) \subset \operatorname{St} \left(\operatorname{St} \left(x_0, \mathcal{U}_i \right), \mathcal{U}_i \right) \subset \operatorname{St} \left(x_0, \mathcal{U}_{i-1} \right).$

Then $x_{n_i} \in \operatorname{Cl} U_{n_i} \subset \operatorname{Cl} (\operatorname{St} (x_0, \bigcup_{i=1})) \subset \operatorname{St} (x_0, \bigcup_{i=2})$. So $\{x_{n_i}\}$ clusters, and hence $\{x_n\}$ has a cluster point. Now let $y_n \in f(A_n)$, $n \in N$. Then there are $x_n \in A_n$ such that $y_n = f(x_n)$. Since $\{x_n\}$ has a cluster point in $X, \{y_n\}$ has a cluster point in Y. Thus $\{f(A_n)\}$ forms an almost q-refining sequence.

We have shown that if $\{A_n\}$ is a q-sequence at x, then $\{f(A_n)\}$ is a q-sequence at f(x), so (b) is proved.

This completes the proof of our characterization theorem.

Remark. Theorem 3.1 remains true if we replace (a) by the property described in Rishel [6, Theorem 1]; because a regular space with this property is a quotient image of a regular M-space by [6] and hence quasi-k by [5].

References

- [1] Chiba, T: On q-spaces. Proc. Japan Acad., 45, 453-455 (1969).
- [2] Lašnev, N.: Closed images of metric spaces. Soviet Math. Dokl., 7, 1219– 1221 (1966).
- [3] Morita, K.: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [4] Nagata, J.: Mappings and *M-spaces*. Proc. Japan Acad., 45, 140-144 (1969).
- [5] —: Quotient and bi-quotient spaces of M-spaces. Proc. Japan Acad., 45, 25-29 (1969).
- [6] Rishel, T.: A characterization of pseudo-open images of M-spaces. Proc. Japan Acad., 45, 910-912 (1969).
- [7] Wicke, H.: On the Hausdorff open continuous images of Hausdorff paracompact g-spaces. Proc. AMS, 22, 136-140 (1969).