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205. On a Non-linear Volterra Integral Equation
with Singular Kernel

By Takashi KANAZAWA
(Comm. by Kinjird KUNUGI, M. J. A., Sept. 13, 1971)

In the present paper we consider the solution y(x) of the non-linear
Volterra integral equation

(1) ¥(@) =7 (@) + j “p(@, Ok, ¢, YOt

where p(z, t) is supposed to be unbounded in the region of integration.
Examples. p(x, t)=(x—1t)""2, or p(x, t)=1t(x?—t?) 2
Evans [1] studied a similar problem using the convolution. Our
treatment below is more elementary than his. We also consider the
continuity and differentiability with respect to a parameter of solutions
of (1) when it contains a parameter.

1. Existence theorem. In equation (1) we shall assume the four
conditions:
(a) f(x) is continuous in the interval I,,
I,={z|0<2<a};
(b) k(x,t,y) is continuous in the region 4,
where 4={(z, t,») |0<t<r<a, |y— f(@)|<b},
sup k(x,t, f(x)=K,

<t<r<a
k(z, t, y) satisfies a Lipschitz condition:

|k, t, y)—k(x, t, y,) | <Ly, — ¥, ;
(¢) f|p(x,t)|dt<M<oo O0<w<a);
0

(d) for any >0, there exists 0>0, independent of x and «, such
that

rwlp(x, t)|dt<e for all 0<a<<e—a0.

Theorem 1. Under the conditions (a), (b), (¢), (d), equation (1)
has a unique continuous solution on the interval 0L e < h, where h is
determind as follows:

for any p, 0< p<1, let P=min (l’%, %) and then let h=min (r, a),
where r is determined by

[(ip@ 1dt<P  ©O<as<n.

Proof. For n=1,2, ..., let us put
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Yul@) = f @) +j:p<x, Dk, t, Yo_ (D)L,
where y,(x) = f(x).

Then, by our determination of P and h, ¥,(x) is defined in I, and
satisfies the inequality

Y@ —f@)|<b (n=1,2,...).
By Lipschitz condition, for x ¢ I,,

|yn+1(x)—yn(x)|<Lj:|p(x, B)] | Yn(®) — Y (D] b

<L SUup |4a(@) — Yo 1(@)| ﬁp(ac, t)| dt
x€lp, 0

<LP sup 19,(2) — Yy (@) .
x€lp
Hence we have
[Yn1(®) =Y, (@) [<OLP)"<Dp"  (0=0,1,2,...).
Since 0<p<1, the sequence {¥,(x)} is uniformly convergent in I,
and y(x) =min y,(x) is a continuous solution of equation (1).

n—co

The uniqueness follows from the Lipschitz condition on k(x, ¢, %).
2. Prolongation of solution.

Theorem 2. The solution curve of equation (1) in Theorem 1 can
be prolonged to the terminal point x=a of the interval I,, when k(zx, t,
Y) is defined and continuous in 0<t<r<a, |y|<o.

Proof. Let y=4(x) be the solution of (1) in the interval I,, 0<
< h(<a), where h=min (r, a) and 7 is determined by

[(w@ bia<p=2  ©<a<n.
Then, from Theorem 1 we know that the equation
Y@=/ @)+ [ D@, Ok, t, 5O+ DG, OkCa, 1, YD)t
has a continuous solution y=7%(x) in the interval A2 <2k (La), be-
cause I:p(x, tk(x, t, §(t))dt is bounded and continuous.

The function

7(x) o<eh
z)=17
V@ {37(90) h<z<2h
is the solution of (1) in the interval I,,.
Repeating the same procedure finite times, we can reach to x=a.

3. Equation containing a parameter. Let us consider the inte-
gral equation

(2) Y@= f(@, D+ [ pla, DG, £, y(b), Ddt
containing a parameter A.
Theorem 3. In equation (2), we shall assume the following
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conditions:
(a’) f(z, A) is continuous in the region
{x, D]0<2<0, |2}
(b)) k(x,t,y, R) is bounded continuous in the region
{(, 8,9, DI0<t<z<0, |y—f(@, DI, 2L
and satisfies a Lipschitz condition
[k, t, Yy, A —F(, T, Yo, DISL Y — sl 5

(¢) fflp(x,t)ldt<M<oo 0<z<a);

(d’) for any >0, there exists a 0>0, independent of a and x,
such that

Jawlp(x, tdt<e for all 0<a<z—a.
Further suppose that for any 2 (A|<D) there exists a (unique) solu-
tion of (2) in the interval I,={x|0<x<a}.
Then the solution y=y(x, 1) is continuous with respect to the para-
meter A in the region {(x, 1) |0<x<aq, |4}
Proof. For any p, 0<p<1, let h=min (r,a), where r is deter-
mined by rlp(x, 3] dt<% o).
0
First we consider the solution y(x, 4) in the region {(z, ) |0<z<h,
A<}
For any A+ 44, |A+44|<1, we have
y@, A+ 42)—y(=, A)
= f(x, A+4)— f(x, )

+j”p(x, (e, £, y(t, A+ A2, A+ 4D —k(x, t, y(t, 2), A+ AD}dt
0

+ [ pG, Ok, £, Ut D, 2+ AD— k(e 1, y(t, 2), D),
and therefore
|y(x, A+42)—y(x, D]
<5,4D+L j :uo(x, O]yt A+ A2 —y(t, D)) di+Md,42),

where | f(x, A+ 40— f(x, 2)|<0,(42),
|k(x, t, y’ 2-’-42)—’0(%, ty y’ 2)|<62(A/2)-

(3)

Let
0,(42) + Mo,(42)=06(42),
then, from assumptions (a’) and (b’)
0(4A)—0 as 421—0.
Let
sup |y(@, A+ 4)—y(x, D|=0y),

(x,)elpx4

then from (3)
0 (W< 04D+ po(wy)
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or
o< o(d)/A—p).
Therefore, when 42—0, 6(44)—0 and d(y)—0, that is, y(x, A) is con-
tinuous with respect to 4.
Applying the same argument successively, we can prove the con-
tinuity of y(x, ) with respect to 4 on the whole interval I,. Q.E.D.
From Theorem 3, we have evidently
Theorem 4. Suppose the equation (2) satisfies the following con-
ditions:
a”) f(z, A, aa—,z f(x, A) are continuous in the region
{(, 0K 2<a, |A—2,|<1.
() k@, 8,9, 2, Lk, 1,9, 2, -2 ke, £, 2
0y 04
are continuous in the region
{@,t,y, D 0<z<t<a, |[y— flx, DIKD, |2—4|<1};

(¢) I:Ip(x,t)ldt<M<oo 0<z<a)

(d) foranye>0, there exists a 0 >0, independent of «, x, A, such
that

r”m(w, b dt<e for all 0<a<x—d.

Further suppose that for any A, |A—24,|<!, there exists a (unique)
solution y(x, 2) of (2) in the interval I,.

Then the solution y(x, A) is continuously diff erentiable with respect
to A at A=24,.
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