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2. An Application of the Method of Acyclic Models

By Hiroshi MiYAZAKI
Mathematical Institute, T6hoku University
(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1954)

The objective of this note is to establish a theorem (Theorem 1)
concerning the equivalence between homology theory of a semi-
simplicial complex K and singular homology theory of a CW-complex
P(K) associated to the complex K. This theorem immediately follows
from two theorems (Theorems 2 and 8), and these theorems are both
proved by using the powerful method of acyclic models which is
established by S. Eilenberg and S. MacLane,® recently. Thus the
CW-complex P(K) may be regarded as a standard geometric reali-
zation of abstract semi-simplicial complex K from the point of view
of homology.

1. Preliminaries. In this section, we summarize some nota-
tions and definitions used in the sequel.

Let K be a semi-simplicial (abbreviated: s.s.) complex, i.e., K
be a collection of elements {s} called simplexes together with two
funetions. The first funection associates with each simplex ¢ an
integer ¢ =0 called the dimension of +; we then say that ¢ is a
g-simplex. The second function associates with each ¢-simplex
(@ > 0) of K and with each integer 0 <7 <gq a (¢—1)-simplex &
called the 7th face of &, subject to the condition

[o.cj)]m — [aw]cf—l)
for i< jand ¢ >1.

We may pass to lower dimensional faces of o by iteration.
0<% < .-+ <1, <q then we define inductively

0({1, (SRR Ay — [0,1'.2 ..... 1'”)] (11).
This is a (g—n)-simplex. If 0<j, < -+- < J,o. < ¢q is the set
complementary to {%¢;, ..., 2.} then we also write
o = 6, »Jg-nds

We write [q] for the set (0,1, ..., ¢) where ¢ is an integer >0.
By a map a: [¢] - [q] (0 < 7 < q) will be meant a stricted monotone
function, i.e., which satisfies a(t) < a(j) for 0<:<j<gq. Let
;2 [q—1] > [¢] denote the map which covers all of [q] except
(t=20,..., ). For a g¢g-simplex ¢ and a function a: [¢] - [q]
(¢ < q), we denote the i-simplex ocuoy, ..., sy DY oa, and we make
the convention that o, = o for the identity map ¢, : [¢] - [q].
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The boundary of ¢ is defined as the chain
sr= 5 (-1,

thus the chain complex C(K) is defined by usual fashion.

A simplicial map f: K— K, of a 8.s. complex K into another
such complex K; is a funetion which to each ¢-simplex ¢ of K assigns
a ¢-simplex = = f(o) of K, is such a fashion that

™ = f(6®), 1=0,...,q.

Next, we proceed to the definition of the CW’-complex P(K)
associated with a s.s. complex K. In the case where K is the
singular complex S(X) of a topological space X, this CW’-complex
P(K) is the singular polytope termed by Giever.®

Let 4, denote the unit ordered euclidean g¢-simplex (¢ = 0),
ane for each ¢-simplex ¢ of K, let (o, 4,) be the rectilinear g-simplex,
whose points are the pairs (o, ), for every point r€ 4,, and whose
topology and affine geometry are such that the map r— (o, 7) is a
barycentric homeomorphism. For any face s, of 4, we shall denote
the corresponding face of (s, 4,) by (o, s:) .

Let R(K) be the union of all the (disjoint) simplicial complex (g,
4,), for every q =0 and every g-simplex ¢ of K. It is obvious that
the ordering of vertices d° ..., d* of 4,, for each ¢ =0, and the
maps r—> (o, ) determine a local ordering (cf. Whitehead,® §19) in
R(K) .

Let (s, ;) and (v, t;) be ¢- and j-dimensional faces of (s, 4,,) and
(v, 4,) respectively. We define the relation (o, ;) = (r, ¢;) if, and
only if ¢=7 and ¢a =68, where a:[¢] >[m], B:[j] >[n] are
defined by s, = (d%%, ..., d*?) and & = (d*, ..., d*9).

Let (o, 71), (7, r,) be points in R(K). We write (o, 7)) = (, 72)
if, and only if, there are equivalence simplexes (o, s,), (v, £:), such
that r, € 8,—$, 7, € t,—%,, and r,= B(t,, s)r,, where B(t;, s;) is the
order preserving barycentric map of s, onto ;. Obviously (e, 7)
= (7, ry) is an equivalence relation. Let P(K) be the space whose
points are these equivalence classes of points in R(K) and which
has the identification topology determined by the map p: R(K)—
P(K), where p(s, r) is the class containing (e, ). Then, in virtue
of Lemma 3 (Whitehead,» §19), P(K) is a CW-complex.

Let R'(K) be the derived complex of R(K), in which each new
vertex is placed at the centroid of its simplex. We define a local
ordering in R/(K) by placing the centroid of (s, 4,) after the centroid
of (v, 4,) if m <mn. Let R’(K) be the derived complex of R/(K),
and a local ordering in R"”(K) be the ordering induced by the
ordering of R'(K) by the same fashion.

Then it is not difficult to verify that the map p: R(K) - P(K) in-
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duces the simplicial structure pR"(K) = P”(K) and the definite
local ordering in P"(K).

Let f: K— L be a simplicial map. Then a continuous map
P(f): P(K)—~P(L) is uniquely defined by P(f)P(s, r) = P(fs, r) for
(o, r)€ R(K). Also it is seen that map P(f) may be regarded as an
order-preserving non-degenerated simplicial map P’(f) of P”( K) into
P''(L).

2. Statements of Theorems

Let & be the category consisting of all s.s. complexes and of
all simplicial maps. Then the correspondence K—->C(K), is a
covariant functor defined on the category & with values in the
category d@ of chain complexes and chain mappings.

Let % be the category congsisting of all topological spaces and
all continuous maps. Then the correspondence X— S(X) is a
covariant functor S:U—> .

Let P be the category consisting of all simplicial polytopes with
the weak topology and with the definite local ordering and of all
order-preserving non-degenerated simplicial maps. Then P’ : & - $
is a covariant functor.

Furthermore, we shall consider two funectors C,: P —d® and
S, : P —8. For any simplicial polytope @ € P, since @ has the definite
local ordering it naturally defines a s.s. complex, and C,(Q) is the
chain complex of this s.s. complex. S,(Q) is the singular complex
of @ considering to be a topological space.

Now we can state the theorems.

Theorem 1. Two covariant functors C, CSP : & - 96 are equiva-
lent i.e., there exist natural transformations A:C—>CSP and p:
CSP — C such that pA(K):C(K) —C(K) and 2u(K): CSP(K) — OSP(K)
are both chain homotopic to the identities, for all Ke &.

Theorem 2. Two covariant functors C, C,P"” : 806 are equiva-
lent in the sense of Theorem 1.

Theorem 3. Two covariant functors C,, CS,: P — G are equiva-
lent in the sense of Theorem 1.

Theorem 1 is an obvious consequence of Theorems 2 and 3, since
P(K) and P"(K) coincide as topological spaces. Theorems 2 and 3
are proved in the next two sections.

We shall remark that Theorems 2 and 8 are generalization of
Theorems II and V in the Reference 4).

3. Proof of Theorem 2

Let K,[m] be an m-dimensional s.s. complex defined as follow-
ing. For each integer ¢, 0 <q <m, g-simplex of K,[m] is any
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function a: [q] ->[m]. The i-face a® of a4 =0, 1, ..., q) is defined
as the composite map a<i. Then, for each map B: [¢]—>[q] (¢ =4q)
i-simplex @@ in the notation of §1 is the composite map

aB: [i] = [m] .

Let M be the collection of s.s. complex K,[m] for all integer
m = 0.

In virtue of Theorem II,® Theorem 2 is established if we show
that for all m, n =0, H,(K, [m]) =0 = H,(SPK,[m]), and functors
C,, C,P": 8>@G are representable with respect to the models I,
for all » >y, where & is the category of all abelian groups and
homomorphisms.

Since H,(K,[m]) = H,(4,) and H,(SPK,[m]) = H,(Sydn), it is
obvious that H(K,[m]) = 0 = H,(SPK,[m]) .

Let Ke & and let s€ K be any n-simplex. Then we define a
simplicial map ¢, : K,[#n]—> K by ¢o(2) = oa for a€ K,[m]. Define a
map ?: Co(K)~>Cu(K) by P() = (¢o, u), Where e, is the unique n-
simplex of K,[n]. (For the definition of C,(K), see the Reference
3), §2.) Then it is easily verified that ¥ is a natural transformation
and this provides the representation of C,.

Next, let £e P”(K) be any mn-simplex. Then & is an image
P(o, s), where o is an n-dimensi n-simplex of K and s is an n-
simplex of the second derived complex 4, of 4,. Such (o, s) is
unique. Define a map Z : C,P(K)~> (CoP)(K) by Z(&) = (¢s, Ple, 5)),
where P: R(K,[m])—~ P(K,[n]) is the identification map. This yields
a representation of the functor C,P. Thus the proof of Theorem 2
is completed.

4. Proof of Theorem 3

It is necessary to consider another functor Si:P— & defined as
following. For each Q&P we define Si(Q) as the subcomplex of
SKQ) which composed of n-simplexes T such that 7(4,) is contained
in an open star st v of some vertex v of Q.

By (Eilenberg and Steenrod,® p. 207), it is easily seen that CS,,
CS¥: P -dG are chain homotopic. Let MM be the collection of all
objects @ of P such that @ is contractible to a point on itself. For
any Q€ M, it is well known that H,(Q) = 0 and H,(S§(Q)) = H.(S«(Q))
= 0.

Next we show that functors C,, CS¥ ; P—>0® are representable
with respect to M for all dimensions. For C, it is obvious.

For any n-simplex T'€ S¥(Q), (@€ P), there are finite vertices
v, such that st v, D T(4,), and such vertices form a simplex of Q.
Let v(T) be the first vertex of this simplex. Let M(T) be the
subcomplex of @ which composed of simplexes with »(T) as the
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vertex and all their faces. Let ¢,: M(T) @—>be the inclusion map.
Then M(T) belongs to model M and map ¢ is a map of P. Define
P(T) = (¢r, T"), where T": 4, M(T) is defined by T': 4,~>Q. Then
¥ yields a representation of CS¥. Thus, as in §2, by Theorem II>®
C, and CS; are chain homotopic, and so C, and CS, are equivalent,
this completes the proof of Theorem 8.
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