2. An Application of the Method of Acyclic Models

By Hiroshi MIYAZAKI

Mathematical Institute, Tôhoku University (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1954)

The objective of this note is to establish a theorem (Theorem 1) concerning the equivalence between homology theory of a semisimplicial complex K and singular homology theory of a CW-complex P(K) associated to the complex K. This theorem immediately follows from two theorems (Theorems 2 and 3), and these theorems are both proved by using the powerful method of acyclic models which is established by S. Eilenberg and S. MacLane,³⁾ recently. Thus the CW-complex P(K) may be regarded as a standard geometric realization of abstract semi-simplicial complex K from the point of view of homology.

1. Preliminaries. In this section, we summarize some notations and definitions used in the sequel.

Let K be a semi-simplicial (abbreviated: s.s.) complex, i.e., K be a collection of elements $\{\sigma\}$ called simplexes together with two functions. The first function associates with each simplex σ an integer $q \ge 0$ called the dimension of σ ; we then say that σ is a q-simplex. The second function associates with each q-simplex $\sigma(q > 0)$ of K and with each integer $0 \le i \le q$ a (q-1)-simplex $\sigma^{(i)}$ called the *i*th face of σ , subject to the condition

$$[\sigma^{(j)}]^{(i)} = [\sigma^{(i)}]^{(j-1)}$$

for i < j and q > 1.

We may pass to lower dimensional faces of σ by iteration. If $0 \le i_1 < \cdots < i_n \le q$ then we define inductively

$$\sigma^{(i_1, i_2, \ldots, i_n)} = \left\lceil \sigma^{i_2, \ldots, i_n} \right\rceil^{(i_1)}$$

This is a (q-n)-simplex. If $0 \le j_0 < \cdots < j_{q-n} \le q$ is the set complementary to $\{i_1, \ldots, i_n\}$ then we also write

$$\sigma^{(i_1,\ldots,i_n)}=\sigma_{(j_0,\ldots,j_{n-n})},$$

We write [q] for the set $(0,1, \ldots, q)$ where q is an integer ≥ 0 . By a map $\alpha: [i] \rightarrow [q] \ (0 \leq i \leq q)$ will be meant a stricted monotone function, i.e., which satisfies $\alpha(i) < \alpha(j)$ for $0 \leq i \leq j \leq q$. Let $\varepsilon_q^i: [q-1] \rightarrow [q]$ denote the map which covers all of [q] except $i(i = 0, \ldots, q)$. For a q-simplex σ and a function $\alpha: [i] \rightarrow [q]$ (i < q), we denote the *i*-simplex $\sigma_{(\alpha(0), \ldots, \alpha(i))}$ by $\sigma\alpha$, and we make the convention that $\sigma\varepsilon_q = \sigma$ for the identity map $\varepsilon_q: [q] \rightarrow [q]$. H. MIYAZAKI

The boundary of σ is defined as the chain

$$\partial \sigma = \sum_{i=0}^{q} (-1)^i \sigma^{(i)},$$

thus the chain complex C(K) is defined by usual fashion.

A simplicial map $f: K \to K_1$ of a s.s. complex K into another such complex K_1 is a function which to each q-simplex σ of K assigns a q-simplex $\tau = f(\sigma)$ of K_1 is such a fashion that

$$\tau^{(i)} = f(\sigma^{(i)}), \ i = 0, \dots, q$$
.

Next, we proceed to the definition of the CW'-complex P(K) associated with a s.s. complex K. In the case where K is the singular complex S(X) of a topological space X, this CW'-complex P(K) is the singular polytope termed by Giever.⁴⁾

Let Δ_q denote the unit ordered euclidean q-simplex $(q \ge 0)$, ane for each q-simplex σ of K, let (σ, Δ_q) be the rectilinear q-simplex, whose points are the pairs (σ, r) , for every point $r \in \Delta_q$, and whose topology and affine geometry are such that the map $r \to (\sigma, r)$ is a barycentric homeomorphism. For any face s_i of Δ_q we shall denote the corresponding face of (σ, Δ_q) by (σ, s_i) .

Let R(K) be the union of all the (disjoint) simplicial complex (σ, Δ_q) , for every $q \ge 0$ and every q-simplex σ of K. It is obvious that the ordering of vertices d^0, \ldots, d^q of Δ_q , for each $q \ge 0$, and the maps $r \rightarrow (\sigma, r)$ determine a local ordering (cf. Whitehead,⁵⁾ § 19) in R(K).

Let (σ, s_i) and (τ, t_j) be *i*- and *j*-dimensional faces of (σ, Δ_m) and (τ, Δ_n) respectively. We define the relation $(\sigma, s_i) \equiv (\tau, t_j)$ if, and only if i = j and $\sigma \alpha = \sigma \beta$, where $\alpha : [i] \rightarrow [m], \beta : [j] \rightarrow [n]$ are defined by $s_i = (d^{\alpha(0)}, \ldots, d^{\alpha(i)})$ and $t_j = (d^{\beta(0)}, \ldots, d^{\beta(j)})$.

Let (σ, r_1) , (τ, r_2) be points in R(K). We write $(\sigma, r_1) \equiv (\tau, r_2)$ if, and only if, there are equivalence simplexes (σ, s_i) , (τ, t_i) , such that $r_1 \in s_i - \dot{s}_i$, $r_2 \in t_i - \dot{t}_i$, and $r_2 = B(t_i, s_i)r_1$, where $B(t_i, s_i)$ is the order preserving barycentric map of s_i onto t_i . Obviously (σ, r_1) $\equiv (\tau, r_2)$ is an equivalence relation. Let P(K) be the space whose points are these equivalence classes of points in R(K) and which has the identification topology determined by the map $\mathbf{p}: R(K) \rightarrow P(K)$, where $\mathbf{p}(\sigma, r)$ is the class containing (σ, r) . Then, in virtue of Lemma 3 (Whitehead,⁵⁾ § 19), P(K) is a CW-complex.

Let R'(K) be the derived complex of R(K), in which each new vertex is placed at the centroid of its simplex. We define a local ordering in R'(K) by placing the centroid of (σ, Δ_n) after the centroid of (τ, Δ_m) if m < n. Let R''(K) be the derived complex of R'(K), and a local ordering in R''(K) be the ordering induced by the ordering of R'(K) by the same fashion.

Then it is not difficult to verify that the map $p: R(K) \rightarrow P(K)$ in-

duces the simplicial structure pR''(K) = P''(K) and the definite local ordering in P''(K).

Let $f: K \to L$ be a simplicial map. Then a continuous map $P(f): P(K) \to P(L)$ is uniquely defined by $P(f)P(\sigma, r) = P(f\sigma, r)$ for $(\sigma, r) \in R(K)$. Also it is seen that map P(f) may be regarded as an order-preserving non-degenerated simplicial map P''(f) of P''(K) into P''(L).

2. Statements of Theorems

Let \Re be the category consisting of all s.s. complexes and of all simplicial maps. Then the correspondence $K \rightarrow C(K)$, is a covariant functor defined on the category \Re with values in the category $\partial \mathbb{G}$ of chain complexes and chain mappings.

Let \mathfrak{A} be the category consisting of all topological spaces and all continuous maps. Then the correspondence $X \to S(X)$ is a covariant functor $S: \mathfrak{A} \to \mathfrak{R}$.

Let \mathfrak{P} be the category consisting of all simplicial polytopes with the weak topology and with the definite local ordering and of all order-preserving non-degenerated simplicial maps. Then $P'': \mathfrak{R} \to \mathfrak{P}$ is a covariant functor.

Furthermore, we shall consider two functors $C_0: \mathfrak{P} \to \partial \mathfrak{G}$ and $S_0: \mathfrak{P} \to \mathfrak{R}$. For any simplicial polytope $Q \in \mathfrak{P}$, since Q has the definite local ordering it naturally defines a s. s. complex, and $C_0(Q)$ is the chain complex of this s. s. complex. $S_0(Q)$ is the singular complex of Q considering to be a topological space.

Now we can state the theorems.

Theorem 1. Two covariant functors C, $CSP : \Re \to \partial \mathfrak{G}$ are equivalent i.e., there exist natural transformations $\lambda : C \to CSP$ and $\mu : CSP \to C$ such that $\mu\lambda(K) : C(K) \to C(K)$ and $\lambda\mu(K) : CSP(K) \to CSP(K)$ are both chain homotopic to the identities, for all $K \in \mathfrak{R}$.

Theorem 2. Two covariant functors $C, C_0 P'': \Re \rightarrow \partial \mathfrak{G}$ are equivalent in the sense of Theorem 1.

Theorem 3. Two covariant functors C_0 , $CS_0: \mathfrak{P} \to \partial \mathfrak{G}$ are equivalent in the sense of Theorem 1.

Theorem 1 is an obvious consequence of Theorems 2 and 3, since P(K) and P''(K) coincide as topological spaces. Theorems 2 and 3 are proved in the next two sections.

We shall remark that Theorems 2 and 3 are generalization of Theorems II and V in the Reference 4).

3. Proof of Theorem 2

Let $K_0[m]$ be an *m*-dimensional s.s. complex defined as following. For each integer $q, 0 \le q \le m$, *q*-simplex of $K_0[m]$ is any

No. 1]

H. MIYAZAKI

function $\alpha: [q] \to [m]$. The *i*-face $\alpha^{(i)}$ of $\alpha(i = 0, 1, \ldots, q)$ is defined as the composite map $\alpha \varepsilon_q^i$. Then, for each map $\beta: [i] \to [q]$ $(i \le q)$ *i*-simplex $\alpha\beta$ in the notation of §1 is the composite map

$$\alpha\beta:[i] \rightarrow [m]$$
.

Let \mathfrak{M} be the collection of s.s. complex $K_0[m]$ for all integer $m \ge 0$.

In virtue of Theorem II,³⁾ Theorem 2 is established if we show that for all $m, n \ge 0$, $H_n(K_0[m]) = 0 = H_n(SPK_0[m])$, and functors $C_n, C_n P'': \Re \to \mathbb{G}$ are representable with respect to the models \mathfrak{M} , for all $n \ge 0$, where \mathfrak{G} is the category of all abelian groups and homomorphisms.

Since $H_n(K_0[m]) = H_n(\mathcal{A}_m)$ and $H_n(SPK_0[m]) = H_n(S_0\mathcal{A}_m)$, it is obvious that $H_n(K_0[m]) = 0 = H_n(SPK_0[m])$.

Let $K \in \Re$ and let $\sigma \in K$ be any *n*-simplex. Then we define a simplicial map $\phi_{\sigma}: K_0[n] \to K$ by $\phi_{\sigma}(\alpha) = \sigma \alpha$ for $\alpha \in K_0[m]$. Define a map $\Psi: C_n(K) \to \tilde{C}_n(K)$ by $\Psi(\sigma) = (\phi_{\sigma}, \varepsilon_n)$, where ε_n is the unique *n*-simplex of $K_0[n]$. (For the definition of $\tilde{C}_n(K)$, see the Reference 3), §2.) Then it is easily verified that Ψ is a natural transformation and this provides the representation of C_n .

Next, let $\xi \in P''(K)$ be any *n*-simplex. Then ξ is an image $P(\sigma, s)$, where σ is an *n*-dimensi *n*-simplex of K and s is an *n*-simplex of the second derived complex Δ''_n of Δ_n . Such (σ, s) is unique. Define a map $\Psi: C_n P(K) \to (\widetilde{C_n P})(K)$ by $\Psi(\xi) = (\phi_\sigma, P(\varepsilon_n, s))$, where $P: R(K_0[m]) \to P(K_0[n])$ is the identification map. This yields a representation of the functor $C_n P$. Thus the proof of Theorem 2 is completed.

4. Proof of Theorem 3

It is necessary to consider another functor $S_{\delta}^*: \mathfrak{P} \to \mathfrak{R}$ defined as following. For each $Q \in \mathfrak{P}$ we define $S_{\delta}^*(Q)$ as the subcomplex of $S_0(Q)$ which composed of *n*-simplexes *T* such that $T(\Delta_n)$ is contained in an open star st *v* of some vertex *v* of *Q*.

By (Eilenberg and Steenrod,¹⁾ p. 207), it is easily seen that CS_0 , $CS_0^*: \mathfrak{P} \to \partial \mathfrak{G}$ are chain homotopic. Let \mathfrak{M} be the collection of all objects Q of \mathfrak{P} such that Q is contractible to a point on itself. For any $Q \in \mathfrak{M}$, it is well known that $H_n(Q) = 0$ and $H_n(S_0^*(Q)) = H_n(S_0(Q)) = 0$.

Next we show that functors C_0 , CS_0^* ; $\mathfrak{P} \rightarrow \partial \mathfrak{G}$ are representable with respect to \mathfrak{M} for all dimensions. For C_0 it is obvious.

For any *n*-simplex $T \in S_{\delta}^{*}(Q)$, $(Q \in \mathfrak{P})$, there are finite vertices v_{i} such that st $v_{i} \supset T(\mathcal{A}_{n})$, and such vertices form a simplex of Q. Let v(T) be the first vertex of this simplex. Let M(T) be the subcomplex of Q which composed of simplexes with v(T) as the vertex and all their faces. Let $\phi_T: M(T) \ Q \rightarrow be$ the inclusion map. Then M(T) belongs to model \mathfrak{M} and map ϕ_T is a map of \mathfrak{P} . Define $\Psi(T) = (\phi_T, T')$, where $T': \Delta_n \rightarrow M(T)$ is defined by $T: \Delta_n \rightarrow Q$. Then Ψ yields a representation of CS_0^* . Thus, as in § 2, by Theorem II,³⁾ C_0 and CS_0^* are chain homotopic, and so C_0 and CS_0 are equivalent, this completes the proof of Theorem 3.

References

1) S. Eilenberg and N. Steenrod: Foundations of algebraic top $r = \sqrt{g}$, Princeton (1952).

2) S. Eilenberg and J. A. Zilber: Semi-simplicial complexes and singular homology, Ann. Math., **51**, 499-513 (1950).

3) S. Eilenberg and S. MacLane: Acyclic models, Amer, Journ. Math., 75, 189-199 (1953).

4) J. B. Giever: On the equivalence of two singular homology theories, Ann. Math., **51**, 178-191 (1950).

5) J. H. C. Whitehead: A certain exact sequence, Ann. Math., 52, 51-110 (1950).