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In the theory of funetion rings the boundedness of functions or
the compactness of the base spaces plays a very important réle, but
it seems to be necessary to remove the condition of the bounded-
ness or the compactness.

In the present note we concern ourselves with ideals of rings
of continuous functions which are not always bounded.

1. Definition 1. Let X be a set. Then we say that a ring
N consisting of complex-valued funetions on X with the ordinary
addition and multiplication is a normal function ring, if it satisfies
the following conditions :

(1) (Self-adjointness) It contains the identity and it contains a
function with its conjugate function.

(2) (Inverse closedness) The subset R, of all strictly positive
funetions with inverses in R possesses the following properties :

(@) If f and g belong to %,, there exists an A€ R, such that

h=f and h<g.

(b) If f belongs to 3t,, there exists a g €, such that ¢°<f.

(¢) If f=g, feR and geR,, then f has an inverse.

(8) (Regularity) If 1‘“‘]?5,4”‘(‘”)@3'1‘2; |A(z)] for two subsets A

and B of X and for some 2 € R, then A and B are separated by a
positive function 4’ of R, i.e., A'(4)=0 and A (B)=1.

Then we see that the concept of a normal funection ring is an
extension of that of the inverse closed, regular, *-commutative,
algebra with the identity. We have many examples of normal
funetion rings. For instance, the ring of all complex-valued con-
tinuous functions on a completely regular space X: G(X, K), the
ring of all complex-valued uniformly continuous functions on a
uniform space X: € (X, K), and the ring of all complex-valued 7-
differentiable functions on an 7-differentiable manifold M": €.(M")
(0=<r=< ) are normal function rings.

2. We introduce a natural topology in a normal function ring.

Definition 2. Let R be a normal function ring with base X
and let U,={f|feR & |fl<w] for some me R, where |f| is the
function whose value at any point # of X is the absolute value of
f(@). Then the m-topology of % is the one with a fundamental
system of neighbourhoods of 0 {U,|= € R,}.
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Then from the conditions (1) and (2) of Definition 1 we obtain
the following :

Lemma 1. A normal function ring with m-topology is o Q-ring
in the sense of I. Kaplansky, i.e., the set of all functions with tnverses
s open. Furthermore the tnverse of its element is continuous wherever
it s defined.

From Lemma 1 any maximal ideal M of a normal function ring
is closed in m-topology and so the ideal of the intersection of maxi-
mal ideals is closed in m-topology.

E. Hewitt®? considered the m-topology of the ring €(X, R) of all
real-valued continuous funections and proving Lemma 1 in this case,
he conjectured the following Theorem 1.

Theorem 1.2 Let R be a normal function ring. Then an ideal
of R is the intersection of all maximal ideals containing it if and
only f it is wm-~-closed, i.e., closed in m-topology.

To prove Theorem 1 we use the following lemmas.

Lemma 2. Let g be an element of R such that |g>m for any
w of R,. Then for any sufficiently small weR, there evists an
element f of R having the following property :

1) |f-gl<m

2) Z(g, ") and X—Z(f) are separated by a function of R, where

Zg, )= (| lo@)| <’ (@)} for some m €%,

Proof. Let P={x||g(@)|==(2)}. Then we may assume that
Z(g, w/2) and P are not void. Furthermore P and Z (g, =/2) are separat-
ed, for let A'=(g-g—(=/2)* /=% then #'(x)<0 for z € Z(g, =/2) and A'(x)
=>8/4 for x € P, hence by (3) of Definition 1 there exists a positive
function % € R such that A(P)=1 and A(Z(g, =/2))=0. Furthermore we
may assume that 0<<h<1, for Z(h, 1/2) and P are separated by a posi-
tive function 2, of % by (8) of Definition 1, i.e., A,(Z(h, 1/2))=1 and
h,(P)=0, then, by (2) of Definition 1, #’'=hh/(hh+hh,) is a desired
function of ®. Furthermore let f=gh. Then fe®R and |f—g|<=
and Z(f)>Z(k)>Z(g, w/2) and Z(g, =/8) and X— Z(g, =/2) are separat-
ed, hence if #'=n/3, then X—Z(f) and Z(g, =) are separated.

Lemma 3. Let I be an ideal and f and g be elements of R such
that Z(9)DZ(f, =) for some m e R,. Then fe I implies g€ I.

Proof. Since I is an ideal, Z(f, =/2) and X-—Z(f, =) are sepa-
rated. Hence there exists a positive funection #Z of % such that

WZ(f, m/2)=1 and M(X~Z(9))=0. Let fi=ff+h(x/2)". Then f,eR,.
Furthermore let f.=f ff 7. Then f,g9=g and f,¢ I, hence gel.
The proof of Theorem 1. We have only to prove the suf-

ficiency. Suppose that an ideal I is m-closed and g¢I. Then there
exists m, € R, such that if [f—yg|<m, Ff¢I. We may assume that
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lg| b for any = € R,. Then by Lemma 1, there exist g’ € R and 7 e R
such that [g—g¢'|<m, and A(Z(g, ="))=1 and W(X—Z(9"))=0.

Now suppose that f'A+f"=1 for some f” eI and f’€R. Then
Z(gNDZ(f", 1/2) hence by Lemma 2 ¢’ € I which is a contradiction.
Accordingly there exists a maximal ideal M such that MDOI and
M>h.

But M$g. For hZ(g, «'))=1 and Z(g, ') and Z(h,1/2) are
separated by %, hence there exists a positive function A’ of R such
that #'(Z(g, ='))=0 and A'(Z(h, 1/2))=1. Then Z(g, ~")C"Z(h"), hence
heM, if ge M. But A+#=1/2 hence A+h'¢ M and so k¢ M which
is a contradiction.

Corollary. The m-closure of o prime ideal of a normal function
ring is a maximal ideal.

Proof. Let I be a prime ideal of a normal function ring & and
let M, and M, be two different maximal ideals containing I. Then
there exist f, and f, such that f,€ M, i=1, 2, and such that f,+f,
=1. Hence Z(fi,1/2)~Z(f,, 1/2)=¢ and by (8) of Definition 1 there
exist h,(1=1, 2) such that A(X—Z(f;,1/2)=0 and k,(Z(f,, 1/3))=1,
hence A,-h,=0 and h, ¢ I4=1, 2, which is a contradiction. Then by
Theorem 1 we obtain the corollary.

3. Applying Theorem 1 the theorem of Gelfand-Kolmogoroff*
can be generalized as follows:

Theorem 2. Let R be a normal function ring with base X and
let R* be the subring consisting of all bounded functions of K. Then
R* 45 a normal function ring with base X. Furthermore let R’ be o
normal function ring with base X such that ROR'DORN*. Then the
structure spaces® of R and R are homeomorphic.

Proof. Let I be an m-closed ideal of 3t and let p(I) be the
ideal of N’ such that it is the m-closure of I~R’ in R’. Conversely
for any m-closed ideal I’ of R’ let I” be the set of all function
Sfed such that there exists a positive function f’e I’ with the
following property : Z(f)DZ(f’, =') for some =’ € R, Let q(I’)=the
m-closure of the ideal I” in R.

We show that for any m-closed ideal I of R, I=gp(I). Let fel.
Then by Lemma 2, there exists g € ® such that |f—g|<= and Z(f,
') and X—Z(g) are separated by he R, ie., 1=h=>0, h(Z(f, ='))=0
and W(X—Z(g))=1. Then Z(h)DZ(f, ='), hence he I~R*CI~R' and
so hep(l). On the other hand Z(g)>Z(h, 1/2), hence g e p(I"), ac-
cordingly fe qp(I). Conversely let fegp(). Then for any =e®R,
there exists g such that Z(9)DZ(h, =) for some h € p(I) and for some
7' € ®’, and such that [f—g|<w. Since p(I)=the m-closure of I~%',
there exists A'e€ I~R' such that |h—A|<='/2. Then ZI',='/2)C
Zh, m)Z"Z(g). Hence by Lemma 2, ge I and so feI.
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Thus the mapping p of the class of all m-closed ideals of R into
the class of all m-closed ideals of % is one-to-one and onto and
furthermore order-preserving, where the order is that of set-inclu-
sion. This means that the structure spaces of % and R’ are homeo-
morphic by Theorm 1.

Corollary. Under the same assumption of Theorem 2, any closed
tdeal of R’ is the intersection of all closed primary ideals containing
ot under the relative topology of R induced by the m-topology of R.
Furthermore if the m-topology of R and the above relative topology
are different, then there exists a closed ideal under the relative topology
which is not the intersection of closed maximal ideals containing it.

For we have only to consider the ideal I={g| for any =R,
there exists =’ ¢ ] such that Zg, m)D>Z(m,, =')}, where =, € %, and
aro o’ for any =’ e i,

4. Definition 3. Let B={Y} be a family of subsets of X with
following properties: i) if Y, and Y, are contained in B, then
Y,«Y,eB and ii) the sum of all ¥ of B is X itself.

Furthermore let & be a normal function ring with base X and
let Uvr,y={g{ lgl@)|<m(@) on Y}. Then (m, B)-topology of R is the
one with a fundamental system of neighbourhoods of 0 {Uwmr,y|mr €
R, & Y eB}.

Then we have the following

Theorem 3. Any normal function ring with the (m,B)-topology
18 o topological ring in which any closed tideal is the intersection of
closed maximal tdeals containing ot.

Proof. Let I be a closed ideal of ® and let g be an element
of ® which is not contained in I. Then there exist =e®, and
Y € B such that if jg—¢'|<m on YV,g’ ¢ I.

Now let %’ be the ring consisting of functions of R confined to
Y. Then %' satisfies the conditions (1) and (8) of Definition 1.
Furthermore let R/, = { f|Y} SfeR,}. Then %', satisfies the condition
(2) of Definition 1 and if fe®R',, then f2e R, and f/n e R',,. Hence
by the same method used in the proof of Theorem 1 there exists
a maximal ideal M of R’ such that M $g|Y and M'DF, where I'=
{le[fe I}. Hence M= {f]lee M} is the maximal ideal contain-
ing I and not containing g. Furthermore M is closed in our topology.
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