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in the theory of function rings the boundedness of functions or
the compactness of the base spaces plays a very important r61e, but
it seems to be necessary to remove the condition of the bounded-
hess or the compactness.

In the present note we concern ourselves with ideals of rings
of continuous functions which are not aIways bounded.

1. Definition 1. Let X be a set. Then we say that a ring
}t consisting of complex-valued functions on X with the ordinary
addition and multiplication is a normal function ring, if it satisfies
the following conditions"
(1) (Self-adjointness) It contains the identity and it contains a

function with its conjugate function.
(2) (Inverse elosedness) The subset of all strictly positive

functions with inverses in possesses the following properties"
(a) If f and g belong to , there exists an h such that

hf and hg.
(b) If f belongs to ., there exists a g e such that gf.
(c) If fg, f t and g 9t, then f has an inverse.

(3) (Regularity) If 1.u.b. lh(x)l_g.l.b. Ih(x)l for two subsets A
xA

and B o X and for some h e , then A and B are separated by a
positive function h’ of , i.e., h’(A)=--O and h’(B)l.

Then we see that the concept of a normal function ring is an
extension o hat of the inverse closed, regular, .-commutative,
algebra with the identity. We have many examples of normal
function rings. For instance, the ring of all complex-valued con-
tinuous functions on a completely regular space X: (X, K), the
ring of all complex-valued uniformly continuous functions on a
uniform space X: (X, K), and the ring of all complex-valued r-
differentiabl functions on an r-differentiable manifold M: ((M)
(0r<) are normal function rings.

2. We introduce a natural topology in a normal function ring.
Definition 2. Let be a normal function ring with base X

and let U=[flf & lfl<r} for some reg where If[ is the
function whose value at any point x of X is the absolute value of
f(x). Then the m-topology of 9t is the one with a fundamental
system of neighbourhoods of 0 {Ulr e }.
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Then from the conditions (1) and (2) of Definition 1 we obtain
the following

Lemma 1. A normal function ring wih m-topology is a Q-ring
in the sense of I. Kaplansky,) i.e., the set of all fanctions with inverses
is open. Furthermore the inverse of its elemen is continuous wherever
it is defined.

From Lemma 1 any maximal ideal M of a normal function ring
is closed in m-topology and so the ideal of the intersection of maxi-
mal ideals is closed in m-topology.

E. Hewitt) considered the m-topology of the ring (X, R)of all
real-valued continuous functions and proing Lemma 1 in this case,
he conjectured the following Theorem 1.

Theorem 12 Let be a normal function ring. Then an idea
of is the intersection of all maximal ideals containing it if and
only if it is on-closed, i.e., closed in m-topology.

To prove Theorem 1 we use the following lemmas.
Lemma 2. Let g be an element of such that igl>r for any

r 02" . Then for any suciently small r there exists an
element f of having the following property"

1) If-gl<-
2) Z(g, r’) and X-Z(f) are separated by a function of , where

Z(g, r’)- {x lg(x)[r’(x) for som r .
Proof. Let P={xIlg(x)l=r(x)}. Then we may assume that

Z(g, r/2) and P are not void. Furthermore P and Z (g, r/2) are separat-
ed, for let h’=(g.-(r/2))/r, then h’(x)O for x Z(g, r/2) and h’(x)
3/4 for x e P, hence by (3) of Definition 1 there exists a positive
unction h e such that h(P)l and h(Z(g, r/2))----0. Furthermore we
may assume that 0_<:hl, for Z(h, 1/2) and P are separated by a posi-
%ive function h of by (3) of Definition 1, i.e., h(Z(h, 1/2))----1 and

h(P)-----0, then, by (2) of Definition 1, h’---hh/(hh+hh) is a desired
function of . Furthermore let f=gh. Then f e and lf-gl <r
and Z(f)Z(h)Z(g, r/2) and Z(g, r/3) and X-Z(g, r/2) are separat-
ed, hence if r=r/3, then X--Z(f) and Z(g, r) are separated.

Lemma 3. Let I be an ideal and f and g be elements of such
that Z(g)Z(f, r) for some r e . Then f I implies g I.

Proof. Since I is an ideal, Z(f, r/2) and X--Z(f, r) are sepa-
rated. Hence there exists a positive function h of ’ such that

h(Z(f, r/2))-=-1 and h(X-Z(g))O. Let f=ff-+h(r/2)% Then f .
Furthermore let f=fff. Then fg=g and f I, hence g 1.

The proof of Theorem 1. We have only to prove the suf-
ficiency. Suppose that an ideal I is m-closed and g I. Then there
exists r,i}i such that if [f-gl<:ro, ftL We may assume that
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igl>r for any r . Then by Lemma 1, there exist g’ and h
such that Ig-g’i < ro and h(Z(g, r’))--- 1 and h(X-Z(g’))-O.

Now suppose that fh+#’--1 for some f’ I and 9e’ . Then
Z(g’)Z(f’, 1/2) hence by Lemma 2 g’ I which is a contradiction.
Accordingly there exists a maximal ideal M such that MI and
Mh.

But MS g. For h(Z(g, r’))=-1 and Z(g, r’) and Z(h, 1/2) are
separated by h, hence there exists a positive function h of such
that h’(Z(g, r’))---O and h’(Z(h, 1/2))---1. Then Z(g, r’)Z(h’), hence
h e M, f g e M. But h/hl/2 hence h+ h’ e M and so h M which
s a contradiction.

Corol|r’. The m-closure of a prime ideal of a normal/unction
ring is a mazimal ideal.

Proof. Let I be a prime ideal of a normal function ring } and
let M and M. be two different maximal ideals containing L Then
there exist f and ft. such that f e M i--l, 2, and such that f /f
--1. Hence Z(f, 1/2)Z(fi., 1/2)-- and by (3) of Definition 1 there
exist h(i-l, 2) such that h(X-Z(fi, 1/2))----O and h(Z(fi, 1/3))l,
hence h-;-0 and hIi--1, 2, which is a contradiction. Then by
Theorem 1 we obtain the corollary.

:. Applying Theorem 1 the theorem of Gelfand-Kolmogoroff>

can be generalized as follows"
Theorem 2. Let be a normal function ring with base X and

le * be the subring consisting o3 al bounded functions of . Then

* is a nornal function ring with base X. Furthermore leg be a
normal function ring with base X such tha ,*. Then the
structure spaces’ of and r are homeomorphic.

Proof. Let I be an m-closed ideal of , and let p(1) be the
ideal of such that it is the m-closure of I9 in . Conversely
for any m-closed deal I of let I be the set of all function
f e 9 such that there exists positive function ] I with the
following property" Z(f)Z(f’, r’) for some r’ e . Let q(I)-the
m-closure of the ideal I in .

We show that for any m-closed ideal I of , I=qp(I). Let f e L
Then by Lemma 2, there exists g e such that If-gl<r and Z(f,
r’) and X-Z(g) are separated by h e , i.e., l:>h:>0, h(Z(f, ))-0
and h(X-Z(g))- 1. Then Z(h)Z(f, r’), hence h e IJ*I’ and
so h e p(I). On the other hand Z(g)Z(h, 1/2), hence g e p(I"), ac-
cordingly f e qp(/). Conversely let f e qp(/). Then for any
there exists g such that Z(g)Z(h, r’) for some h e p(/) and for some
.’ . and such that If-g]< r. Since p(/)--the m-closure of I,
there exists h’e I’ such that ]h-hi<r/2. Then Z(h, r/2)
Z(h, r)Z(g). Hence by Lemma 2, g e I and so f e L
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Thus the mapping 79 of the class of all m-closed ideals of into
the class of all m-closed ideals of 9 is one-to-one and onto and
furthermore order-preserving, where the order is that of set-inclu-
sion. This means that the structure spaces of and 9 are homeo-
morphic by Theorm 1.

Corollary. Under the same assumption of Theorem 2, any closed
ideal of r is the intersection of all closed primary ideals containing
it under the relative topology of induced by the m-topology of .
Furtre if the m-topology of and the above relative topology
are different, then there exists a closed ideal under the relative topology
which is not the intersection of closed maximal ideals containing it.

For we have only to consider the ideal I--
there exists r e such that Z(g, r)Z(ro, rt)}, where ro e t and
ro>r’ for any r’e .

4. Definition 3. Let 3 [Y} be a family of subsets of X with
following properties" i) if Y and Y are contained in 3, then
YYeS and ii) the sum of all Yof 3 is Xitself.

Furthermore let be a normal function ring with base X and
let Ur,r= [gl [g(x)l<r(x) on Y}. Then (m, )-topology of is the
one with a fundamental system of neighbourhoods of 0

Then we have the following
Theorem 3. Any normal function ring with the (m, )-topology

is a topological ring in which any closed ideal is the intersection of
closed maximal ideals containing it.

Proof. Let I be a closed ideal of and let g be an element
of which is not contained in L Then there exist r 9, and
Ye such that if lg-g’[<r on Y, g’ L

Now let be the ring consisting of functions of confined to
Y. Then satisfies the conditions (1)and (3) of Definition 1.
Furthermore let .= Ill Ylf e }. Then , satisfies the condition
(2) of Definition 1 and if f e ,, then f e 9t, and f/n e t,. Hence
by the same method used in the proof of Theorem 1 there exists
a maximal ideal M of such that M S g]Y and MI, where 1=
{flYIf 1}. Hence M-- {f]flYe Mr} is the maximal ideal contain-
ing I and not containing, g. Furthermore M is closed in our topology.
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