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54. Note on Dirichlet Series. XIII. On the Analogy
between Singularities and Order-Directions. II

By Chuji TANAKA
Mathematical Institute, Waseda University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., April 12, 1954)

(1) Introduction. Let us put

1.1) F(s)=§}1a,,, exp(—4,8) (s=a+it, 0 <Ap< o+ <Ay—>+ o).
In the previous note (1), we have proved
Theorem 1 (C. Tanaka). Let (1.1) be uniformly conmvergent in
the whole plane. If we have
1.2) (i) R@)=0 @n=1,2,...)
) (i) lim1/2,log 2,.log (cos (6,))=0, 6,=arg (a,),

then 3(s)=0 s the order-direction of (1.1).
In this note, we shall generalize it as follows:

Theorem II. Let (1.1) be uniformly convergent in the whole
plane. Then there exists at least one order-direction in | 3(s)|<m$,
provided that

(i) lim 1/2,log 2,.log | cos (6,) |=0, 6,=arg (an),

(ii) the sequence (N (a,)} has sign-changes between
(1.3) R(ap,) and R(ar.,) (v=1,2,...), where lim (4., —2,)

—g>0, Tim »/r,=8(<1/g), 7,=1/2.0y +4esp)-

Thkeorem III. Let (1.1) be uniformly convergent in the whole
plane. Let the subsequence {4} of {2} be defined as follows:

@ I7ci—>ﬂoo('?"lc+l—znlc) >0, hﬂl X"_I”Icl >0,

(1.4) e s
(b) }cim k)2, =8.

If we have

(1.5) ( i ) %(an)go) fOI' n E {nlc} ’

(ii) lim 1/2,log 4, . log (cos (8,))=0,

n>00 nE{ng}
then in | 3(s) |<2nd, there exists at least one order-direction of (1.1).
From theorem III follows immediately
Corollary. Let (1.1) with lim (2,..—2,) > 0 be simply (necessarily

20-r00

absolutely) convergent in the whole plane. If we have | arg (a,)|<0<m/2,
except for {a,} such that ;ﬂim kf2,,=0, then J(s)=0 s the order-
direction of (1.1).
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(2) Lemmas. We need some lemmas.

Lemma I. Let (1.1) be uniformly convergent in the whole plane.
Let us put

2.1) p(2)=I(1—2/r),
V=1
where (i) k:a positive integer,

(i) 0<ri<Pre <Py ere <Py<< +o+ >+ 0
i) Hm (r—r)=Ry>0, lim|r,—4|=hy>0,

V> 400 V,0->00

(2.2

(iv) lim y/r,=8 (Z1/h,).
V> +o00
Then, following propositions hold :
@) f(s) :i () exp (—2,8) is also uniformly everywhere.
n=1

(2.8) (b) f(s) has the same order as (1.1).
(¢) If 3(s)=t s the order-direction of f(s), them in
| 3()—t | <knd, there exists at least one order-direction
of (1.1).

Proof. Two propositions (a) and (b) have been proved in the pre-
vious note ( 2) p.93, corollary III). Here we shall establish only
(e).

By F. Carlson’s theorem ( 6) p.267), for any given ¢ (>0),
we have
(2.4) | p(2) |< exp (k(w8+¢€)|z]) for |2|>R(e).
Taking account of (2.4) and H. Cramer-A. Ostrowski’s theorem ( 6)
pp. 49-52), we obtain

2.5) £(8)=1/2ari. 9§F(s-u)co(u) du  (e>0),
| % |=km&+e

where ¢(2)= i‘, cfnl 2, @ (u)= 2 c/u*t . Hence,
n=0

n=0

M, ¢, €) = Max | f(s) |

R(D=0, [J(H—t| e

< Max | Fis-u) | . 1/2m. § [000)] du|=| F(&') | ASM(o', 1, kmd+22). 4,
e R IwImbmase

where (i) A=1/2w.§ﬁ | O) || du |,
|u|=kns+e
(ii) REN=d, |0 —0o| Zbknd+e, |3 —t| < knd+2¢,
(ili) Mo, t, kmd+2¢) = Max | F'(s) |.
R(H=0/, [J()—t|Zkms+28
Accordingly, by lim¢'/o=1, we get

G->—00

(2.6) ps(e) = lim 1/(—o).log*log* My(s, ¢, €)

= lim 1/(— ). log*log*Mu(o, t, kws+2¢) <px,
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where pr is the order of F(s). Since J(s)=¢ is the order-direction
of f(s), by (2.3) (b)
2.7 pi(&) = pr = pr,
denoting by p; the order of f(s).
By (2.6) and (2.7),

pr=lim 1/(—0o) .log*log*Mx(a, t, kmd+ 2¢).

Since ¢ is arbitrary, there exists at least one order-direction of F(s)
in the strip: | 3(s)—%| < k=8, which is to be proved.

Lemma II (C. Tanaka). Let us denote by o, and o, the simple
and absolute convergence-abscissa of (1.1) respectively. Then we have

0= {"8 - C} < lim 1/z.log*N(z) < lim 1/4,.log n

Gy — O
where C=1im 1/,.log | a, |, N(x):Z'Alé
n>0 (2l=sin<le

This lemma can be proved by entirely similar arguments as in
a lemma ( 8) p. 50), so that we omit its proof.

Lemma III (C. Tanaka, 5) p. 68 theorem I). Let (1.1) be uni-
formly convergent in the whole plane. Then we have

—I/Pcé - 1/P = _l/Pc + m(x logx)-l-logFN(x)

< —1/p, + lim @, log 2,)7*.log n,
where —1/p, = lim (2, log 2,)*.log | a, |, p: the order of (1.1).

(8) Proof of the Theorems
Proof of theorem II. Without any loss of generality, we can
assume that R(a,) > 0. Let us put

f(S) = ;an¢(2n) exp (—-],,,S),
where, putting r,=1/2 . (4, + 445 ), We set P(R) = H1(1~z2/r3).
Then we have

3.1) (1) R(@up(dn)) =0,
. (ii) lim 1/(2,,, log ]n) Jdog (COS (e'n')) =0,

8,) = arg (a,p(A,)).
The first part of (8.1) is evident. Since ¢(4,) is real, on account of
(i) we have cos (6,/)=|cos(6,)|, so that from (1.3) (i) immediately
follows (ii).

By (8.1), (a) of lemma I and theorem I, 3(s)=0 is the order-
direction of f(s). Hence, by (¢) of lemma I, in | 3(s)| < =8 there
exists at least one order-direction of F'(s).

Proof of theorem III. Let (1.1) be of order p. Let us put

Fy(s) = k%an,‘ exp (— s, 8), Fi(s) = nS:an exP (—248)-
n € {ug}
By lemma II, we have
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lim 1/4,,.log | a,, | < lim 1/2,.log | @, | < 6;<0u,

> 00 200

where ¢, : the uniform convergence-absecissa of (1.1). Since we get
(8.2) ]glm 1/2n, Jog | @y, | = — oo

By (8.2) and lemma II, Fi(s) is absolutely (a fortiori uniformly)
convergent in the whole plane. Hence, Fy(s) is also uniformly con-
vergent everywhere.

Let us denote by p;, p. the order of Fi(s) and Fy(s) respectively.
By lemma III, p, is determined by

lim 1/(2,, log 2,) .10g | @y, |=—1/p;.
k>0
Again by lemma III, we get
—1/py = 1im 1/(2,, log ,,) . log | @y, |

< lim 1/(2, log 4,).log | @, | = —1/p, < —1/p,

so that p;<p. Hence, taking account of F\(s)=F\(s)+ Fu(s), we get
easily p,=p.

Now we distinguish two cases:

Case p;<p: Then we have evidently p,=p. By S. Mandelbrojt’s
theorem ( 4) p. 423, 7) p. 19) in | 3(s) |<=d there exists at least one
order-direction of Fi(s). Since p,<p, the order-direction of F\(s) is
also the order-direction of F(s), so that in | 3(s) |<=5, a fortiori in
| 3(8) |=<278, F(s) has at least one order-direction

Case p,=p: Putting qu(z):]{?l(l——z“’/zik)” , we have

FO =310, @ (1) €XD (—8) = 3] 0, 0(3) €XD (— 4.

n=1 nE{ny}
Since ¢(2,)>0, arg (a,p(4,)=arg(a,) =0, for ne {n}, we have
evidently
R (a’n¢’ (Rn)) =0 for ne {74},
lim 1/(2,, log 2,).log {cos (arg (@, (A,)))} = 0.
n E{ng}
Hence, by theorem I and (a) of lemma I, 3(s)=0 is the order-direc-

tion of f(s). Again, by (c) of lemma I, in | 3(s) | < 27§ there exists
at least one order-direction of F(s).

Thus, in any case, in | 3(s) |<2#8, F(s) has at least one order-
direction, q.e.d.
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