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1 Introduction. Let us put

(1.1) F(s)--Sqa. exp(-2s) (s=a+it, 0<__<.<... <-->+ oo).
In he pevious noe (I), we hsve poved

Theorem I (C. Tanaka). Le (1.1) be uniformly convergen in
the whole plane. If we have

(i) 2, ...)
(ii) lim 1/4 log ..log (cos (.))=0, 0=arg (a.),

then (s)--0 is the order-direction of (1.1).
In this note, we shall generalize it as follows:

Theorem II. Let (1.1) be uniformly convergent in the whole
plane. Then there exists at least one order-direction in $(s) l<--___r$,
provided that

(i) lim 1/4 log ..logl cos () I-0, 0.=arg (a.),

(ii) the sequence [i (a.)} has sign-changes between
(1.3) (a) and (a+) (,=1, 2, ...), where lim.(+-2)

=g0, Hm ,/r= (__<l/g), r=l/2.(++,).
Theorem III. Let (1.1) be uniformly convergent in the whole

plane. Let the subsequence [i.} of {.} be defined as follows"

(i) (a.)__>0, for n {n},
(1.5) (ii) lim 1/. log, R. log (cos ())=0,

n

then in 13(s)1<--__2r$, there exists at least one order-direction of (1.1).
From theorem III follows immediately
Corollary. Let (1.1) with lim (+-):> 0 be simply (necessarily

absolutely) convergent in the whole plane. If we have arg (a)lO<: r/2,
except for [a.} such that limk/,=O, then 3(s)=O is the order-

direction of (1.1).
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2 ) I.emmas. We need some lemmas.
Lemma I. Let (1.1) be uniformly convergent in the whole plane.

Let us put

where

(2.2)

q(z) II(1-z/r),
(i) k’a positive integer,
(ii) 0<:r<r.<r-.. <r<...-->+
(iii) lim (r.,+-r)=h >0, lim r-, I=h >0,

(iv) lim ,/r- (l/h).
Then, following opositions hold"

(a) f(s)-a(,) exp (-s) is also uniformly everywhere.

(2.3) (b) f(s) has the same order as (1.1).
(c) If (s)=t is the order-direction of f(s), then in

(s)-t k, there exists at least one order-direction
of

Proo Two propositions (a) and (b) have been proved in the pre-
vious note (2) p. 93, corollary III). Here we shall establish only
(c).

By F. Carlson’s theorem (6) p. 267), for any given e(>0),
we have
(2.4) I(z) l<exp(k(+)]z]) or ]zl>R().
Taking account of (2.4) and H. Cramer-A. Ostrowski’s theorem (6)
pp. 9-52), we obtain

(2.5) f(s)=l/2i. F(s-u)(u) du ( 0),

where (z)- cJn..z" (u)= c,/u+ Hence,
=0 =0

Max lF(s-u) ]
1/2. _" l(u)ii du I-1F(s’)I .A<Mz.(6’, t, k$+ 2e).A,

where ) A-1/2. (u)[[ du

(iii) M.(6, t, k+ 2e) Max F(s)[.

Accordingly, by lira a/a--1, we get

(2.6) p](e) lira 1/(-a).log+log+M(a, t, e)

lira 1/(- a). log+log+M,(a, t, k+ 2e)
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where is the order of F(s). Since ;3(s)=t is the order-direction
of f(s), by (2.3) (b)
(2.7) p,(s) p, p,,
denotin by p, the order of f(s).

By (2.6) and (2.7),
g.=lim 1/(-a).log+log+M.(, t, k+2).

Since e is arbitrary, there exists at least one order-direction of F(s)
in the strip: ](s)-t k, which is to be proved.

Lemma II (C. Tanaka). Let us denote by and the simple
and absolute convergence-abscissa of (1.1) respectively. Then we have, C i-i- 1/x. log+N(x) lim 1/,.log n0

where C=lim 1/,.logl a I, N(x)= 1

This lemma can be proved by entirely similar arguments as in
a lemma (3) p. 50), so that we omit its proof.

Lemma III (C. Tanaka, 5) p. 68 theorem I). Let (1.1) be uni-
formly convergent in the whole plane. Then we have

1/p g 1/p g 1/p + lim (x log x)-. log N(x)

% -1/p + iim (2. log 2")-.log n,

where -1/g lim (2 log 2,)-.logl a. , p" the order of (1.1).

3 ) Proof of the Theorems
Proof of theorem II. Without any loss of generality, we can

assume that (a)> 0. Let us put

f(s) a.(.) exp (-s),

(i) (()) o(.i) () i i/(&o).o (eo (J))-o

0’ arg (a()).
The first part of (3.1) is evident. Since () is real, on account of
(i) we have cos (eJ)=i cos(O)I, so that from (1.3) (i) immediately

follows (ii).
By (3.1), (a) of lemma I and theorem I, 3(s)=0 is the order-

direction of f(s). Hence, by (c) of lemma I, in 13(s)] $ there
exists at least one order-direction of F(s).

Proof of theorem III. Let (1.1) be of order p. Let us put

F(s) % exp (- s), F(s) -Za exp (-s).

By lemma II, we have
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lim 1/,.log a, lim 1/2,. log a, a,<:a,
where r- the uniform convergence-abscissa of (1.1). Since we get

(3.2) lim 1/o. log a. 1=- .
By (3.2) and lemma II, F(s) is absolutely (a fortiori uniformly)
convergent in the whole plane. Hence, F(s) is also uniformly con-
vergent everywhere.

Let us denote by , . the order of F(s)and F(s) respectively.
By lemma III, p is determined by

lim 1/( log, %).log a llp.
k->oo

Again by lemma III, we get

-1/ lira 1/(, log, ,). log, a,

lim 1/( log" ). log a I=- 1/p-1/p,

so that g. Hence, taking account of F(s)=F(s)+F@), we get
easily p2p.

Now we distinguish two eases:
Case p<p" Then we have evidently p =p. By S. Mandelbrojt’s

theorem (4) p. 428, 7) p. 19) in ]3(s)$ there exists at least one
order-direction of F(s). Since pz<p, the order-direction of F(s) is
also the order-direction of F(s), so that in 13(s), a fortiori in
13 (s)IG2, F(s) has at least one order-direction

Case p2=p" Putting (z)- H(1--z/2, ,,,, we have

f(s)--a () exp (--s) a() exp (--s).

Since (,)>0, arg (a,(,))- arg (a,) e, for n {n}, we have
eviden%ly

(a, (,)) 0 for n {n},
lira 1/(, log 2,). log {cos (arg (a, (2,))) 0.

Hence, by theorem I and (a)of lemma I, 3@)=0 is the order-direc-
tion of f(s). Again, by (c) of lemma I, in 13(s)[ 2v$ there exists
at least one order-direction of F(s).

Thus, in any case, in 13(s)12$, F(s) has at least one order-
direction, q.e.d.
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