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89. Note on an Ergodic Theorem

By Shigeru TSURUM!
Mathematical Institute, Tokyo Metropolitan University, Tokyo

(Comm. by Z. SUETUNA, M.J.A., June 12, 1954)

1. Let (X, 3, m) be a measure space such that X is a set, 3
is a Borel field of subsets of X, and m is a a-finite measure defined
on . A single valued (not necessarily one to one) transformation
T of X onto itself is called measurable if both T and its inverse
transformation T- transform every set of to a set of .. The
measurable transformation T is called non-singular (with respect to
m) if E e and re(E)--0 imply m(TE)=m(T-E)--O, and is called
incompressible (with respect to m) if E e and T-E E imply
m(T-’E-E)=O. Two measures a and defined on 3 are called
equivalent if E e and a(E)=0 imply /(E)--0 and conversely. A
measure on 3 is said to be invariant under the measurable trans-
formation T (or the measurable transformation T is said to be
measure-preserving with respect to ) if (T-E)=t(E) for any set
Eof .

If T is measurable and non-singular, we put = {T-E; E e }.
Then, from the Radon-Nikodym theorem, there exists a measurable
function w(x) such that

m(TE)--fw(x,)du
.E

for every set E of t. Let us now put

w0(z)--1, w,(x)=w(x)...w(T"-’x)
for any point x of X and for n=1,2, Then we obtain the
recurrence formula:

w,/(z) w,(Tz)
for i, j=O, 1, 2,

Y. N. Dowker 1_] ) has offered the following question concern-
ing the extension of Halmos’ ergodic theorem 2J for one to one
transformation to the case of a single valued transformation: wheth-
er, for a single valued, measurable, non-singular transformation
T of X onto itself, the condition that T is incompressible (or some
similar condition) yields that, for any measurable function g(x)

which is positive almost everywhere, the series g(Tx)w(x)
diverges almost everywhere ?

1) Numbers in square brackets refer to the references at the end of this paper.
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The purpose of this note is to show that even if we assume
the existence of a finite invariant measure equivalent to m (which
is obviously a stronger assumption than the incompressibility o T),
the above series does not necessarily diverge almost everywhere.

2. In the ollowing, we shall show two examples.

Example 1. Let us consider the collection of the linear inter-
vals J.’s and J’s in the (s, t)-plane such that

J,= f(s, k) 0 s < 1/2+},

J.- {(s, k) 1/2+ s < 1/2},

J=Jl, J,
for k-0, 1, 2, Let (X, , m) be the measure space such that
X is the union of all J’s, is the class of Lebesgue measurable
subsets of X, and m is the ordinary linear Lebesgue measure on .
Then (X, , m) is obviously a finite measure space. We now define
a transformation T by

T(s, t)-(2+s, 0), if (s, t) e

-2 s-2; ,k+l if (s,t) eJ,,

for k=O, 1, 2,
Then we get
(i) T is a single valued, measurable, and non-singular trans-

formation of X onto itself;
(ii) there exists a finite invariant measure equivalent to m;

(iii) the series w((s, t)) converges almost everywhere.

The ope i ollo obioul rom h definition o .
Poooii: We p o n e Eo $

=0

x, e h11 ho h i inin nde . o ny
o , e hh

k=O

T-(E J) J,_
for k=l, 2, and

ET-(E( J) (EU J)
for k-0, 1, 2, Thus we get for any set E of
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t(T-’E)--tT-( [J (E( J))] --- T-’(ED J)k=0 k=O

(E( J) t(E),

which is the required.

Proof of (iii)" From the definition of w, it is easy to see that
3 if (s, t) e UJ,,((s, ))=-2-’ o

--2’ k=O

We shall now define a new single valued transformation o of
Jo onto itself by

cp((s, 0)) ({ 2s}, 0),
where {x} denotes the fractional part of x. Then we have, or
any point (s, 0) of Jo and n--0, 1, 2,...,

w(T(s, O))-w(’(s, 0)),
( ) w((s, o))-w((s, O)).w(T(s, 0))...w(T"-(s, 0))

=w((8, O)).w(o(s, 0))...w(o-(s, 0)).
Hence, let f be the characteristic function of J,o, then we have
by Raikov’s theorem [3] that for almost all points (s, 0) of Jo

( 2 ) lim 1 "- f 1

_
f(fp(s, 0))-- fdm--m(J o)

n =o 2

Now we have for any point (s, 0) of Jo
n-1

( 3 f(q(s, 0))

[Number of elements i’s such that o(s, O) e J.o for Oin-1
[Number of elements i’s such that w(ot(s, 0))=3/2 for Oi_n-1],

and further, for any point (s, 0) of Jz,0 and i-0, 1, 2,...,

1w(rp(s, 0))= 2"
Thus, from (1), (2)and (3), it follows that for almost all points
(s, o) of Jo

so that

( a ) w((s, o)) < .
On the other hand, for any point (s, t) of X, there exists a positive
integer p(s, t) such that
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( 5 ) T:’,’(s, t) Jo.
Then we have by the recurrence formula that for any point (s, t)
of X

p(s,t)--I

5] ((, t)) ((, )) + w+,,,((s, ))

0 ,0

Thus, from (4), (5)and (6), we

almos everywhere on X.
Remark. We noiee ha, in ease m is finite as in xample 1,

the series w,() eanno be uniformly bounded. In fae, if we

assume ,a, te series X (z) is uniformly ouneO anO K is its
=0

maoran,, ,en we ave

0
X

whieh is a contradiction.
However i will be shown in he followin example

above series may be uniformly bounded for some -finie (no finite)
measure saee and some transformation.

Example 2. Le us eonsider the collection of he linear inter-
vals &,’s and &’s in he (, )-lane such

&,_= {(, -) /
for =1, 2, ..., and

J,o (, o); 1/ 1/ + 1/
and

for k--0, 1, 2, Let (X,,m) be the measure space such
that X is the union of all J’s, is the class of Lebesgue measurable
subsets of X, and m is the ordinary linear Lebesgue measure. Then
(X, , m)is a a-finite (hOg finite) measure space. We now define
a transformation T by
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T(s, t)--(6s, k + 1),
3

1,0),

=(4s, 0),
=(6s, -+),

if (s, t) e J,, for k=l, 2, ...,

if (s, t) e J.. for /=2, 3, ...,

if (s, t)

if (s, t) e

if (s, t), J,o,

if (s, t) e J,_,
if (s, t) e J._ for k=2, 3, ...,

Then we get
(i) T is a single valued, measurable, and non-singular trans-

formation of X onto itself;
(ii) there exists a finite invariant measure equivalent to m;

(iii) the series w((s, t)) is uniformly bounded on X.

The proof of (i) follows directly from the definition of T.
Proof of(ii)" We put for any set Eof

1 m(E( J) +m(E Jo) + 2 m(E J_)(E)=: 2-’ =
Then it can be proved similarly as Example 1 that is a finite
invariant measure on equivalent to m.

Proof of (iii): From the definition of w, it is easy to see that
2w((s, t))--3-’
3
5’
4

Thus we have

if (s, t) e J,. [.J J,o,

_oE w((, t))< +_ 5- 5

almost everywhere on X.
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