148. Uniform Convergence of Fourier Series. II

By Masako Satô
Mathematical Institute, Tokyo Metropolitan University (Comm. by Z. Suetuna, m.J.A., Oct. 12, 1954)

1. A. Zygmund has proved the following.

Theorem 1. Let $0<\alpha<1$. If $f(x)$ is continuous and

$$
\omega(1 / n)=o\left(1 / n^{\alpha}\right)
$$

then the Fourier series of $f(x)$ is summable ($C,-\alpha$) uniformly.
This theorem was generalized by S. Izumi and T. Kawata [1] and S. Izumi [2]. We give another generalization of Theorem 1. In our theorem, the case where the modulus of continuity is of order $o\left(1 /(\log n)^{\beta}\right)$ is contained. (See Cor. 2.) The method of proof is analogous to [3]. (Cf. [4].)
2. Theorem 2. If $f(x)$ is of class $\phi(n),{ }^{1)} \phi(n)$ being less than n, and is continuous with the modulus of continuity $\omega(\delta)$, then ${ }^{2}$

$$
\left|\sigma_{n}^{-\alpha}(x)-f(x)\right| \leqq C\left[\omega\left(\frac{1}{n}\right)^{1-\alpha}\binom{n}{\phi(n)}^{\alpha}+\frac{1}{n} \int_{\pi / n}^{\pi} \frac{\omega(t)}{t^{2}} d t\right]
$$

where $0<\alpha<1$ and $\sigma_{n}^{-\alpha}(x)$ is the nth Cesàro mean of the Fourier series of $f(x)$ of order $-\alpha$.

Proof. We have

$$
\sigma_{n}^{-\alpha}(x)-f(x)=\int_{0}^{\pi} \varphi_{x}(t) K_{n}^{-\alpha}(t) d t=\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right] \varphi_{x}(t) K_{n}^{-\alpha}(t) d t=I+J
$$

say, where $K_{n}^{-\alpha}(t)$ is the Fejér kernel of order $-\alpha$, and $\varphi_{x}(t)=$ $f(x+t)+f(x-t)-2 f(x)$. It is known that
(1)

$$
K_{n}^{-\alpha}(t)=\psi_{n}^{-\alpha}(t)+r_{n}^{-\alpha}(t)
$$

where

$$
\begin{gather*}
\psi_{n}^{-\alpha}(t)=\cos \left(\left(n+\frac{1-\alpha}{2}\right) t-\frac{1-\alpha}{2} \pi\right) / A_{n}^{-\alpha}\left(2 \sin \frac{t}{2}\right)^{1-\alpha}, \tag{2}\\
r_{n}^{-\alpha}(t)=O\left(1 / n t^{2}\right), \quad\left|K_{n}^{-\alpha}(t)\right| \leqq C n \tag{3}
\end{gather*}
$$

Then we get by (3)

$$
I \leqq \int_{0}^{\pi / n}\left|\varphi_{x}(t)\right|\left|K_{n}^{-\alpha}(t)\right| d t \leqq C n \int_{0}^{\pi / n}\left|\varphi_{x}(t)\right| d t \leqq C n \omega\left(\frac{\pi}{n}\right) \int_{0}^{\pi / n} d t=C \omega\left(\frac{1}{n}\right)
$$

1) A function $f(x)$ is said to be of class $\phi(n)$ if $\phi(n) \uparrow \infty$ as $n \rightarrow \infty$ and

$$
\int_{a}^{b} f(x+t) \cos n t d t=O(1 / \phi(n))
$$

uniformly for all x, n, a, b with $b-a \leqq 2 \pi$. (Cf. [4].) If $\omega(1 / n) \leqq 1 / \phi(n)$, then the condition becomes trivial, and hence we may suppose that $\omega(1 / n) \geqq 1 / \phi(n)$.
2) C denotes an absolute constant, which need not be equal in each occurrence.

By (1), putting $\omega(1 / n)=1 / \theta(n)$,

$$
\begin{aligned}
J & =\int_{\pi / n}^{\pi} \varphi_{x}(t) K_{n}^{-\alpha}(t) d t=\int_{\pi / n}^{\pi} \varphi_{x}(t) \psi_{n}^{-\alpha}(t) d t+\int_{\pi / n}^{\pi} \varphi_{x}(t) r_{n}^{-\alpha}(t) d t \\
& =\left[\int_{\pi / n}^{a \theta(n) / \phi(n)}+\int_{a \ominus(n) / \phi(n)}^{\pi}\right] \varphi_{x}(t) \psi_{n}^{-\alpha}(t) d t+\int_{\pi / n}^{\pi} \varphi_{x}(t) r_{n}^{-\alpha}(t) d t \\
& =J_{1}+J_{2}+J_{3},
\end{aligned}
$$

say, where we take a as the nearest number to 1 such that $\operatorname{an} \theta(n)$ $/ \pi \phi(n)$ is an even integer. We have by (2)

$$
\begin{aligned}
J_{1}= & \int_{\pi / n}^{a \theta(n) / \phi(n)} \varphi_{x}(t) \frac{\cos \left(\left(n+\frac{1-\alpha}{2}\right) t-\frac{1-\alpha}{2} \pi\right)}{A_{n}^{-\alpha}(2 \sin t / 2)^{1-\alpha}} d t \\
= & \frac{1}{A_{n}^{-\alpha}}\left[\int_{\pi / n}^{a \theta \theta(n) / \phi(n)} \varphi_{x}(t) \cos ((1-\alpha)(t-\pi) / 2) \frac{\cos n t}{(2 \sin t / 2)^{1-\alpha}} d t\right. \\
& \left.+\int_{\pi / n}^{a \theta(n) / \phi(n)} \varphi_{x}(t) \sin ((1-\alpha)(t-\pi) / 2) \frac{\sin n t}{(2 \sin t / 2)^{1-\alpha}} d t\right] \\
= & J_{4}+J_{5},
\end{aligned}
$$

say. Putting $\chi(t)=\varphi_{x}(t) \sin ((1-\alpha)(t-\pi) / 2)$ and $M=\operatorname{an} \theta(n) / \pi \phi(n)$, then by the Salem method

$$
\begin{aligned}
& J_{5}=\frac{1}{A_{n}^{-\alpha}} \int_{\pi / n}^{a \theta(n) / \phi(n)} \chi(t) \frac{\sin n t}{(2 \sin t / 2)^{1-\alpha}} d t \\
& =\frac{1}{A_{n}^{-\alpha}} \int_{\pi / n}^{2 \pi / n}\left\{\sum_{k=1}^{M}(-1)^{k} \frac{\chi(t+k \pi / n)}{(2 \sin (t+2 k \pi / n) / 2)^{1-\alpha}}\right\} \sin n t d t \\
& = \\
& =\frac{1}{A_{n}^{-\alpha}} \int_{\pi / n}^{2 \pi / n} \sum_{k=1}^{M / 2}\left[\frac{\chi(t+2 k \pi / n)-\chi(t+(2 k+1) \pi / n)}{(2 \sin (t+2 k \pi / n) / 2)^{1-\alpha}}\right] \sin n t d t \\
& \quad+\frac{1}{A_{n}^{-\alpha}} \int_{\pi / n}^{3 \pi / n} \sum_{k=1}^{M / 3} \chi(t+(2 k+1) \pi / n) \\
& {\left[\frac{1}{(2 \sin (t+2 k \pi / n) / 2)^{1-\alpha}}-\frac{1}{(2 \sin (t+2(k+1) \pi / n) / 2)^{1-\alpha}}\right] \sin n t d t} \\
& = \\
& =J_{6}+J_{7},
\end{aligned}
$$

say, then

$$
J_{7} \leqq C n^{\alpha-1} \int_{\pi / n}^{2 \pi / n} \sum_{k=1}^{M / 2} \frac{\omega((2 k+3) \pi / n)}{(t+2 k \pi / n)^{2-\alpha}} d t \leqq C \omega\left(\frac{1}{n}\right) \cdot\left(\frac{n \theta(n)}{\phi(n)}\right)^{\alpha} .
$$

On the other hand, since

$$
\begin{aligned}
\mid \chi(t+2 k \pi / n) & -\chi(t+(2 k+1) \pi / n) \mid \\
& \leqq\left|\varphi_{x}(t+2 k \pi / n)-\varphi_{x}(t+(2 k+1) \pi / n)\right|+C / n,
\end{aligned}
$$

we have

$$
\begin{aligned}
J_{6} \leqq & C n \int_{\pi / n}^{2 \pi / n} \frac{\sum_{k=1}^{M / 2}\left|\varphi_{x}(t+2 k \pi / n)-\varphi_{x}(t+(2 k+1) \pi / n)\right|}{k^{1-\alpha}} d t \\
& +\frac{C}{n} \sum_{k=1}^{M / 2} \frac{1}{k^{1-\alpha}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq C \sum_{k=1}^{M / 2} \frac{n}{k^{1-\alpha}} \int_{\pi / n}^{2 \pi / n}|f(x+t+2 k \pi / n)-f(x+t+(2 k+1) \pi / n)| d t+\frac{C M^{\alpha}}{n} \\
& \quad \leqq C\left\{\omega\left(\frac{1}{n}\right)+\frac{1}{n}\right\} M^{\alpha} \leqq C\left\{\omega\left(\frac{1}{n}\right)+\frac{1}{n}\right\}\left(\frac{n \theta(n)}{\phi(n)}\right)^{\alpha} \\
& \quad \leqq C\left\{\omega\left(\frac{1}{n}\right)\left(\frac{n \theta(n)}{\phi(n)}\right)^{\alpha}+\left(\frac{n}{\phi(n)}\right)^{\alpha} \frac{1}{\theta(n)^{1-\alpha}}\right\} .
\end{aligned}
$$

Thus

$$
J_{5} \leqq C \omega\left(\frac{1}{n}\right)\left(\frac{n \theta(n)}{\phi(n)}\right)^{\alpha}+C\left(\frac{n}{\phi(n)}\right)^{\alpha} \frac{1}{\theta(n)^{1-\alpha}}=C \omega\left(\frac{1}{n}\right)^{1-\alpha}\left(\frac{n}{\phi(n)}\right)^{\alpha},
$$

and J_{4} has also the same estimate. Since $f(x)$ is of class $\phi(n)$,

$$
\begin{aligned}
J_{2} & =\int_{\alpha \theta(n) / \phi(n)}^{\pi} \varphi_{x}(t) \frac{\cos \left(\left(n+\frac{1-\alpha}{2}\right) t-\frac{1-\alpha}{2} \pi\right)}{A_{n}^{-\alpha}(2 \sin t / 2)^{1-\alpha}} d t \\
& \leqq \frac{C}{A_{n}^{-\alpha}(a \theta(n) / \phi(n))^{1-\alpha}}\left|\int_{\alpha \theta(n) / \phi(n)}^{\pi} \varphi_{x}(t) \cos \left(\left(n+\frac{1-\alpha}{2}\right) t-\frac{1-\alpha}{2} \pi\right) d t\right| \\
& \leqq \frac{C n^{\alpha} \phi(n)^{1-\alpha}}{\theta(n)^{1-\alpha}} \frac{1}{\phi(n)}=C\left(\frac{n}{\phi(n)}\right)^{\alpha} \frac{1}{\theta(n)^{1-\alpha}},
\end{aligned}
$$

furthermore by (3)

$$
J_{3}=\int_{\pi / n}^{\pi} \varphi_{x}(t) r_{n}^{-\alpha}(t) d t \leqq \frac{C}{n} \int_{\pi / n}^{\pi} \frac{\omega(t)}{t^{2}} d t .
$$

Thus we have

$$
J \leqq C\left[\omega\left(\frac{1}{n}\right)^{1-\alpha}\left(\frac{n}{\phi(n)}\right)^{\alpha}+\frac{1}{n} \int_{\pi / n}^{\pi} \frac{\omega(t)}{t^{2}} d t\right],
$$

which gives the required inequality with the estimation of I.
Taking $\phi(n)=1 / \omega(1 / n)$, we get
Corollary 1. $\left|\sigma_{n}^{-\alpha}(x)-f(x)\right| \leqq C\left[\omega\left(\frac{1}{n}\right) n^{a}+\frac{1}{n} \int_{\pi / n}^{\pi} \omega(t) \frac{t^{2}}{t^{2}} d t\right]$.
3. Theorem 3. If $f(x)$ is of class $\phi(n), \phi(n)$ being less than n, and is continuous with modulus of continuity $\omega(\delta)$, and further $\omega\left(\frac{1}{n}\right)^{1-\alpha}\binom{n}{\phi(n)}^{\alpha} \rightarrow 0$ as $n \rightarrow \infty$ where $0<\alpha<1$, then the Fourier series of $f(x)$ is summable ($C,-\alpha$) uniformly.

We can easily prove by Theorem 2.
Furthermore we get Theorem 1, taking $\omega(1 / n)=o\left(1 / n^{a}\right)$ in Corollary 1.

Corollary 2. Let $0<\alpha<1$. If $f(x)$ is continuous, $\omega(1 / n)=\left(1 / n^{n}\right)$ and

$$
\int_{a}^{b} f(x+t) \cos n t d t=o\left(1 / n^{a}\right) \text { unif. in } x, n, a, b \quad(b-a \leqq 2 \pi)
$$

then the Fourier series of $f(x)$ is summable ($C,-\alpha$) uniformly.

For the proof it is sufficient to take $1 / \phi(n)=o\left(1 / n^{\alpha}\right)$ in Theorem 3.
Corollary 3. Let $0<\alpha<1$ and $\beta>0$. If $f(x)$ is continuous, $\omega(1 / n)$ $=o\left(1 /(\log n)^{\beta}\right)$ and

$$
\int_{a}^{\beta} f(x+t) \cos n t d t=O\left((\log n)^{\beta / \alpha-\beta} / n\right) \text { unif. in } x, n, a, b(b-a \leqq 2 \pi),
$$

then the Fourier series of $f(x)$ is summable ($C,-\alpha$) uniformly.
For the proof it is sufficient to take $\phi(n)=n /(\log n)^{\beta / \alpha-\beta}$ in Theorem 3.

References

[1] S. Izumi and T. Kawata: Notes on Fourier series IX, Tôhoku Mathematical Journal, 46 (1939).
[2] S. Izumi: Some trigonometrical series IX, Tôhoku Mathematical Journal, 6 (1953).
[3] M. Satô: Uniform convergence of Fourier series, Proc. Japan Acad., 30 (1954).
[4] J. P. Nash: Uniform convergence of Fourier series, Rice Institute Pamphlet (1953).

