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173. Dirichlet Problem on Riemann Surfaces. II
(Harmonic Measures of the Set of Accessible Boundary Points)

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Let R be a null-boundary Riemann surface with A-topology®
and let R be a positive boundary Riemann surface given as a
covering surface over £. When a curve L on R converges to the
boundary of R and its projection L on R tends to a point of R*,
we say that L determines an accessible boundary point (A.B.P.)
relative to B*. In the following we denote the set of all A.B.P.’s
by AR, R*). We consider continuous super-harmonic function v(z)
in R such that 0=<v(2)<1 and limu(z)=1 when z tends to the
boundary along every curve determining an A.B.P. and we denote
by w(R, AR, R*)) the lower envelope of above functions which is
harmonic in B on account of Perron-Brelot’s theorem. We also
consider AR, B*) and u(R>, W(R>, R*)) defined similarly on R>.
In the following we assume that the universal covering surface of
the projection of R on R is hyperbolic. Then there exists a null-
boundary Riemann surface R’ such that the projection of RC R, R’
CR and that R™ is hyperbolic. We map R’ and R conformally
onto U,:|nl<1 and U,:|&|<1 respectively. Let . be a curve in
U. determining an A.B.P. of R*, whose projection on E’. Then we
see that [. converges to a point &:1§1=1 and z=2(¢): U.~R—>R'
has an angular limit at &. It follows that z=2(f) has angular
limits at every point of Al with respect to K’, where Al is the
set of points & on |é|=1 such that at least one curve determining
A.B.P. with projection in B terminates at &.

Let {R)} be an exhaustion of R and 4;,.(6) be the set such
that lr<_16~ei“|<-—1% and |arg(1~e‘“’§)|<—%——~:ll— and let 8(f(§)) be
n
the diameter of the set f(§):&¢ 4,,,(0) with respeet to the A4-
topology. Then we have
A= STTTSITS(f(E) = & < € dinninl6) ]
o LT 1k k J

m n

Since 8(f(¢)) is continuous with respect to 6 for fixed I, m and
n, this shows that Al is a Borel set.
M. Ohtsuka has proved the next

1) See, Dirichlet problem. I.
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Theorem 2.1. If the universal covering surface of the projection

18 of hyperbolic type, we have
w(Uy, AD)=u(R=, WR™, B*)),?
where o(Us, AL) ts the harmonic measure of Al.

Theorem 2.2. Let the untversal covering surface of the projection
of R be hyperbolic and map R onto U.:|&|<1 conformally. Let D
be the normal polygon of Fuchsian group containing =0 with arcs
a4 (t=1,2,...) on |§|=1 and let T;(§=1,2,...) be the substitutions
of Fuchsian group.

If mes (; T; (3] o)) =2m, we have

u(R=, (R, B*))=u(R, WR, B*)).

Proof. Let A. be the set of points such that at least one curve
determining an A.B.P. on (R, R*)) terminates there. Then A, is
measurable and u(R”, A(R>, B*))= M(R” AR>, B))=w(U,, A:). Assume

p(R, AR, R*)) < w(R>, A(R>, B*)), then there exists, out side of A,
a set F; of positive measure such that u(R, (R, R*)) has angular
limits larger than & (§>0).

Since mes(H;N (2] T_,,-; a;))=mes Ej, there exist {«;} and an integer

m such that mes G 7T} (i} (ai—aé))<—i—mes E;, where o is a sub-arc
7 i=1

of ¢; such that «; and «f have no common endpoints. Take closed sets
m

F§ (1=1,2,...m) such that F{C(ai\E;) and mes (X7} (Zi F¥)
J i=

>% mes Es. Denote by «(#') the harmonic measure of ;Tj(z F¥.
t=1

Then it is automorphic with respect to Fuchsian group and «(F")

has limit zero along every curve terminating at (e, () complement

of SVFY). Put Jr=&lw(F)=11NC,(SFY), where C, (SJF) is the
i=1 4=1 i=
set of point z of R such that dist (z, §F§)>——}- on D, and let w)}..:(2)

be a harmonic function in R,,,;— {(Bp.i— Rn))J?} such that );’...(2)
=0 on OR,.;—J} and w},,m“(z) 1 on 9J*N\ (Bp.i—Rn)+oR,, N J7.
Then it is clear wm‘(z)—hm wnti(?) is super-harmonic and o*'(z)

=lim »);'(2) has limit 0 on N F§ and moreover w(F')—iw™*(z)=0.

m=00

Thus «™'(2)=0, because »*'(z) has the angular limit 0 almost every-
where on |&]=1. Hence we can easily construct a super-harmonic
function w(2) such that w(z)=c along every curve tending to the

2) This theorem is proved under a little weaker condition. See, M. Ohtsuka:
On covering surfaces over an abstract Riemann surface, Nagoya Math. Journ., 4,
109-118 (1952).

3) See 5).
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I=00
boundary in ;E J*. Then S(z)=Min[1, v(2)—8w(F)+&w(z)] has the

L,A>0
limit ! along every curve determining an A.B.P. Hence u(R,3(R,R*))
<u(R,UR, B*))—dw(F"). This is absurd, therefore

p(R, AR, B*)) = p(F=, U(E=, B*)).

On the other hand u(R>, A(R>, B*))<u(R, (R, B*)), since every uv(z)
on R can be considered on RE>.

Corollary. If R is a Riemann surface of finite connectivity and
R is hyperbolic, u(R™,AUR*, R*))=u(R, UR, B*)).

Since R is a metric space, R+A(R, R*) is also a metric space.
Let I. be a continuous curve in U, such that whose projection L
on R converges to a point of (R, R*) with respect to the metric
of B. Then the projection L of L on R converges to a point p, ¢ R*.
If p, e R, the composed function 2=2(£): R*—R has an angular limit
Do It follows that /. tends to a point &. Therefore 2(§) has the
angular limit p,. Hence 2(¢): R*—>R+UA(R, R*) has the angular limit
. We denote by A the set on |é|=1 such that at least one I,
above-mentioned terminates. Let E, be a set on |§|=1 where the
Green’s function of R has an angular limit 0. If /. is a Stolz’s
path terminating at &, ¢ A{NE,, then the projection L of /. on R
tends to the boundary of R and has the projection L on R which
tends to a point D e B. Thus /. determines an A.B.P. of AR, R).
Hence

AD AV D (ALD B,
Let & be a closed subset of AR, R*) and let F' be the set on |&|=1
such that at least one curve determining an A.B.P. of & terminates.
We call F' the hyper image ot &. Put

Flee [1;1 TSI (distance (£ (7 mso(6). &) g%]

] m n
where 7, n.2(0) is a segment of the radius such that 1— %n <|¢|< 1-—%,

arg §=60. Hence F’ is measurable. We call #’ the image of &.
Then

F'NAHCFC{B.+ (AN F")} and
(FNALNE,)CF"CF,

where B. is the set where at least one curve determining an A.B.P.
of R whose projection lies on B of R terminates.

Let u(R*, &) be the lower envelope of super-harmonic functions
v(2) such that 0=<u(2)<1, limu(z)=1 along every curve determining
an A.B.P. of R” lying on & and let w(R=, WR>, B)), u(R>, AR, B))

4) See, the proof of theorem 2.2.--.4x is a hyper image of Y(R™, PR*),
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be the lower envelopes of vz(R*) and vx(RZ”) such that lim vx(R>*)=1,
lim vx(R*)=1 along every curve determining an A.B.P. of R* and
B> lying on B of R. Since at every point of F’ AL limu(z)=1
along radial segments, (U, FV () A< u(R=, F (N A) S u(R”, F)=u(R,
UR, B)+p(F=, AN F').  Since w(R>, A(R>, B)) = n(£*, U=, B))=0,”
mes|A.—AY|=0 and since (U, F' ) A.) = u(R”, A. N F"), we have
o(Usy F)= (U, F N Ay)=uw(R>, §)=w(Us, F'"), because mes|E,|=2.

Theorem 2.3. Let R be a positive boundary Riemann surface
and let the universal covering surface of the projection of R over
B be hyperbolic, if  w(R,U(R, R*))=u(R>, A(R~, B*)), then

WR, &)= (B>, F)=w(U;, F)
Jor every closed subset ¥ of WU(R, B*).

Proof. Put AR, B*) in the place of & in the above equality
and regard that z=2(¢) has angular limits on R at a set on |§[=1
where at least one curve determining an A.B.P. of U(R, B) terminates.
Then we have u(R”, (R, B*)) W(R=, WR, R))=w(U:, A;). We denote by

&x all points z of R+ A(R, R*) such that z has a distance g% from &.

Then &= (&, and the image F, of &, on |&|=1 is measurable and

2=2(£) has angular limits on R at F,. Let {R,} be an exhaustion of R
with compact relative boundaries {OR,} and let o%, be the relative
boundary of &,. Let op..:(2)(n, m,i=1,2,...) be the harmonic
function in R,,,— (¥, (Bni:—R,)) such that ol ,...(2)=1 on {OF,N
Bpei—R)}+ @ N OR,) and wpy(2)=0 on OR,,.;—&,. Then o)
:1}“3} wmmsi(2) 18 super-harmonic in R and lim e(z) = u(R, &,) for

every n. Assume, u(R, &) = p(R>, ). Then there exist a number
n and a closed subset E, in AL CF! for sufficiently small number
8 such that wu(R,F,) has angular limits larger than & and z==z(¢)

converges uniformly inside an angular domain: |arg|&— e‘“ll<—g~——8’

(8’>0) for every point ¢ of E;, because (U, AD)=u(R, AR, B*))
>u(R, %) implies that u(R,TF) has angular limits 0 almost every-
where on CA. (complementary set of 4:;). Let D,(E;) be the domain
in U such that D,(E,) contains the endpart of the angular domain

larg(l—e“"&)l<~;l-/l at every point ¢ of E;. On the other hand

the universal covering surface R is mapped onto a simply connected
domain containing £=0 such that \JR3=U.. Let H, be the ring

5) Map R of a null-boundary Riemann surface onto U::|¢|<1 and let E the
image of the ideal boundary of R. Then mes E=0. See, M. Tuji: Some metrical
theorems on Fuchsian groups, Kodai Math. Sem. Rep., Nos. 4-5, 27-44 (1950).
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domain such that r<|&|<1. Then there exists r such that z=z(%)

has a distance > 21 from %,, where & ¢ H,.(N\D,(E;), because z=2(%)
n

has an angular limits of A.B.P.’s of R which have a distance gl

n
from . Let D}(F;) be a component of H, (" D,(Es) which has a closed
subset of positive measure of E; and let «(£) be a harmonic function
such that »(§)=1 on the boundary of Di(E;s) except one on |&|=1
and »(§)=0 on |§|=1. Consider wy(z) in U,, we see easily that
wn(?)=w(€) for every m, because the image of 9%, does never fall
in Dj(E;). Since the boundary of D(Ej) is rectifiable, there exists
a set of positive measure on |§|=1 where w(§)=0. Hence u(R, %)
< lim 0®(z) =< w(§), whence u(R,#) has an angular limit 0 almost

everywhere on E;. This is a contradiction. Thus we have
p(R, &)= p(R=, 5).

Let R’ be the projection of B on B. If R™ of R is parabolic

(R cannot be mapped onto a unit-circle conformally) we remove
a finite number of points p;, 0s,..., D, (if R is closed and its genus
is zero or one, then the number of points which are to be remove,
is three or one respectively) and remove all the points p; (7=1,2,...)
lying on p, from R. Denote the remaining surface by B and define
,u(ﬁ, AR, R*)) and p(ﬁ?‘)l(fi’?@*)) similarly. In the following we
assume that R has at least one A.B.P. M. Ohtsuka has proved
the following:
w(R, UR, B)=p(B, WE, B*) = p(R=, UR", B*) = u(B, AR, R*)) and
if R is a null-boundary Riemann
surface, u(R,U(R, R*))=u(R, AR,
_E*)):]- and /"‘(Rw’ S)I(Rw’ E*)):O
He proposed the problem: does
there exist a case when the in-
equality holds? We show that
there are these cases.

Example. Let B,,, By_;: 7
=1,2,... be the system of closed
domains in |z|<1 such that

B,,: 1——lm§r§1— 1 : 3 r=0<" (containing — 1)
An+3 dn+4 4 4 2
1 1 3 5 ..
By i 1— = <r<1-—  —a=6=>— """ [containin —>.
Wt T gy =S g1 T 4Ty ( £2

We can construct a holomorphic funetion f():]/z1<1 by

Runge’s theorem such that If(z)—1|<—~7ll— in B,, and lf(z)l<l in
n
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B,_,. It is clear that f(2) is not bounded in |z|<1. Since the
value w=f(2)=c is an exceptional point, there exists at least one
asymptotic path along which f(2) tends to <, when 2z converges to
the boundary of the unit-circle. Let [ be an asymptotic path with
starting point p, where |f(p,)|=M,. Then [ is not contained in

i‘, (By,+ By,—,) for a number n, and determines an A.B.P. 3 lying

m=ngy

over w=-co, Let p,. be the first point where [ passes |z|=r, and
let [, be the part of [ between p, and p,. Let () be a continuous
super-harmonic funetion such that 0<v,(z)<1 and limu,(z)=1, when
2 tends to |2|=1 along [. Then there exists r; such that v,()=1—3§
on l~l,(s for a given number 8. Consider the part lr2,,1:l,2—— l,, then

l

-, cONnects two circles [2[=7r, and [z[=7, (r2>7'1>1~—?~:ngn0).
n

Without loss of generality, we can suppose that [ has a branch in

the left semi-circle. Let A,B,C,D,FE and F be points shown in

the figure and let D, be the simply connected domain with boundary

AB+BC+CD+DEFA and let w,(2) be the harmonic measure of BC
with respect to D,. Then we see that v,(2) = (1—8)w,(2) and v,(0)
>(1—8)w,(0)=8, (8,>0) for every n. We denote by U the unit-circle
and let v(U, 2, P) be a continuous super-harmonic function such that
0=v(U, 2, B)<1 and lim (U, 2, B)=1 along [ every curve tending to
P and let w(U,#,P) be their lower envelope. Since {v(U,z, P)} is
contained in the class {y,(z)}, we have u(U,z, B)=8, at 0.

We remove all points {2;} where f(2;,)=0, or 1 or 2 from U, and
denote by U the remaining surface. Map il onto U: |§]< 1 conformally.

Let {$.} be the set of all A.B.P.’s of U whose projection lie on
w=o and let E. be the hyper image of {$.}. Then E\_ is a
set of linear measure zero. Let u(U:, {B..}) and (U, E. ..) be super-
harmonic function in U, such that limo(Us, {P..})=1 when 2z tends
to E;.. Then
WU, B)=u(T, (B} <w(Us, Brw)=0, where w(U, ) and u(T, {P.}) are
the lower envelopes of v(U,, P) and o(Us, {P.}).
Since P is closed, we can conclude by Theorem 2.3 that

#U, B)=uU, ¥) p=2(U, P) implies

WO, WU, B) = w(T, AT, R*)).

We consider U as a Riemann surface R, then we have

W(B=, W=, B*)) = (R, UR, RB*)).
Similarly, if we consider U as a Riemann surface R, then we have

/“‘(R) %{(R, E*)) i. /"(Rm, QI(Rw, E*))°



