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171. Equations o[ Motion o[ a Free Particle in the Author’s
General Relativity as a Non.Holonomic Laguerre Geometry

Realized in the Moving Three.Dimensional
Cartesian Space

By Tsurusaburo TAKASU
(Comm. by Z. SUETUNA, M.J.A., NOV. 12, 1954)

The author [4] 1) has established anew a theory of relativity as
a non-holonomic Laguerre geometry realized in the three-dimension-
al Cartesian space. Although the geometry itself is nothing other
than Cartan-WeitzenbSck’s teleparallelism geometry (Einstein, [2_)
keeping the Riemann metric system when it is grasped in 4-dimen-
sion, the point of view is different from the Einstein’s and has the
following fortes ("Vorteile"): it coheres to the physical phenom-
ena in the very places where the phenomena take places: (ii) it
is perceptional rather than o be conceptual; (iii) it implies neces-
sities and needs no fundamental assumptions; (iv) it is naive and
has an extreme transparency unifying the classical physics, the
special relativity (which is in fact a 3-dimensional holonomic Laguer-
re geometry), the general relativity and the author’s necessary
unitary field theory, which is non-holonomic parabolic Lie geometry
(Takasu, 5, 6, 7, [8, 9), and not only that it unifies sub-
stantially the gravitation with the electromagnetism in a similar
manner as the light wave and the electromagnetic wave are unified,
but also it admits of fields of (holonomic or non-holonomic) actions
of any kind of energy emitted from each particle into unification;
(v) it admits of the following fundamental principle: "The nora
holonomic-Laguerre-geometrical quantum mechanics is obtainable
from the Laguerre-geometrical (i. e. special-relativistic) quantum
mechanics by replacing the special-relativistic action dr-=cdt in the
latter by the corresponding non-holonomic-Laguerre-geometrical non-

holonomic) action dr=Edt and the partial derivative operators --1) The ciphers in the square brackets refer to the References at the end of this
paper.

2) The more than a dozen unitary field theories hitherto appeared are as for
unification all formal ones. They may describe respective ideal cases of phenomena
(e.g. if photons emitted by an electron emit energy spherically, the Einstein-Mayer
theory describes it. As for the Einstein’s new theory [3], Appendix II, see the ob-
jection of Prof. C. Mller [10]. As for gv, see my view [6], p. 264).

3) We can write the differential dr only in the hnear sense (e.g. along the geodesic
curves of the second kind in the 4-dimension), for Edt=4(xz)dx is not holonomic.



No. 9] Equations of Motion of a Free Particle etc. 815

(=Cartesian) by their generalizations "". (vi) Treating of the

vector-form %o=/, what has proved to be natural for the non-
holonomic Laguerre geometry, is physically more powerful than
treating of the tensor form gdxdx.

In the Prof. Einstein’s general relativity, the equations of motion
of a free particle are those of the ordinary geodesic curves in 4-
dimension, while in the author’s general relativity, they are those
of the geodesic curves of the second kind in 4-dimension, which are
homocentric sphere-systems in the three-dimensional non-holonomic
Laguerre-geometry (what seems perceptionally to be quite natural).

Sifters or the two sets o equations o motion are o course
necessities and experimental data. As 2or the 2ormer the above
(iii) shall be referred to.

The purpose of this memoir is to show that some approvable
famous data of experiments are supporting the author’s general rel-
ativity so well as Einstein’s.

1. Equations of Motion for a Free Particle. The autoparallel
curves of the Cartan-Weitzenbick’s teleparallelism have the equa-
tions of the form

(1.1) dx dx" dx O,dS-- +A dS dS

where

(1.2)

(1.3)
(.4)
(.5)

X X

ds=-dS=Jo-oo, (i=1, 2, 3),

Owing to the known identities
d o o? o

_
(dx dx dx)(1.6) -dS d- +AL dS dS -d-- +A gS dS

he equation (1.1) may be rewritten as follows:

givin rise
(1.9) =adS, (a=eons.,
whose finite equations

( 0) =fsgS=aS+e, (e-eonst.)
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represent a geodesic curve of the second kind (autoparallel curves of
the teleparallelism) in 4-dimension and a homocentric sphere-system
in the 3-dimensional non-holonomic Laguerre geometry.

The author identifies (1.1) (accompanied by (1.2)) i.e. (1.8) i.e.
(1.10) with the equations of motion of a free particle. The equation

d oo

dS dS

is deducible from ]dS--O taking xx and

dS
as variable parameters.

d.x dxdx___O

dS

2. The Gravitational Field of an Isolated Particle. As a partic-
ular solution [A. S. Eddington 1, p. 85 of the Einstein’s equation
(2.1) R,=0,
we take the Schwarzschild’s form:
(2.2) dS= -7(tO-d-tdO-t sin Odcp + /(t)dt,
where

(2.3) 7-1 2m.
The solution (2.2)will ultimately be shown to correspond to the
field of an isolated particle continually at rest at the origin. Owing
to the act that our non-holonomic Laguerre geometry is realized
in the three-dimensional Cartesian space, we may identify , 0 and
cp with the usual polar coordinates in the Cartesian space (this
point differs from the case of Einstein space: cf. A. S. Eddington
[], p. 8).

3. Planetary Orbits. In our case (2.2), the differential equations
(1.9) become:

1 dp _a dO
V’- dS P dS

---a’
1) dt a

_
k, say.g sin -dO_dS a’ /- dS

Let us consider the case d0=0 (taking t=r/2) of planetary motion,
so that a=0 and the identity aa-aa=-I becomes:
(3.2) (a) + (a)-k= 1.
Then (3.1) becomes

1 dp dq V’-- dt(3"3)’) V’- dZ
=a" P dS

=a’
dZ

k.

d d4) In place of the classical expression p--=h, the expression -h appears

d _a, above.in the Einstein’s general relativity, to which corresponds p---
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Put
(3.4)
Then from (3.1), we obtain

(3.5)
The (3.2) gives

namely

i.e. by (2.3):

(3.6)

h a/a1.

,), \ dS /
+ (a) F 1,

du I u -1--(a)/M _(a1) 1
(a) h,

dcp ]
+

h-- + h
u+ 2mu,

where
(3.7) u=l/f,.
Differentiating (3.6), we obtain [cf. [1, p. 86, (39.61), (39.62)]:

(3.8) d +u= m
d

+3mu.
mIn (3.8) we have 3mu: -3uh and 1/h=(-l+k)/(a)-l, where

dS
is, for ordinary speeds, an extremely small quantity

--practically the square of the transverse velocity in terms of the
velocity of light. Hence h is such a small quantity. For exzmple,
the above ratio for the earth is 0.00000003. In practical cases the
second term in (3.8) will represent an almost inappreciable correc-
tion to he Newtonian orbit

m(3 9) du +u=
d h

4. The Advance of Perihelion. Notwithstanding the geometry of
the author’s theory differs from that of Einstein’s, the equation (3.8)
or the orbit of a planet is of the same form as (39.61) of Edding-
ton lJ, p. 86 and so the discussion made by Eddington in Art. 40
there holds equally in the author’s case. Thus the data there given
support the author’s general relativity also.

5. The Deflection of Light. For motion with the speed of light

d =a and (3.5) we have a- h-, anddS=O, so that by p d--
the orbit (3.8) reduces to

(5.1) -d+u 3mu
d
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The orbit (5.1) gives the path of ray of light, which coincides with
(41.1) of Eddington 1, p. 90. Hence the discussion there made
holds equally here. The observed values obtained by five expeditions
were as follows:

Observers

Dyson
Eddington
Campbell

Freundlich

Matsukuma

Year

1919

1919

1922

1929

1936

Expedition places

Sobral
Principe
Wallal

Takengon

Koshimizu

f

3.6

5.0

8.5

5.0

N

7
5

18

62-85
8

8

E

1.98"__+0.12"

1.61"_+0.30"

1.77"
2.2"
2.24"

28"

Here f-focal distance of the telescope used, N-number of eclipse
plates, N-number of stars mapped on a single plate.

These data support the Einstein’s theory and the author’s theory
equally.

6. Displacement of the Fraunhofer Lines. The arguments made
by Eddington [1, p. 91-93 hold equally here. The light coming
from a stronger (non-holonomic) action field have spectral lines more
displaced to the red than those for the light emitted by a resting
atom in a weaker (non-holonomic) action field. We mark the quan-
tities for the light coming from the

resting atom near the earthsun with s.
with e.

Then in usual notations we have

Since is very small compared with 1,

l+--lq

where M, and R, are the mass and the radius of the sun respect-
ively. Hence

a,-a= da M, 1.4 = 0.00000212.ao a R, 9970OO
I2 we take a star other than the sun and take M, and R, as units
of the mass and the radius of the star, we obtain

a R R’
the Doppler effect being taken into account.

In the case o2 white dwarf, M/R are large and the observation
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of the shift of the spectral lines are comparatively easy. The
chairman W. Adams o2 the Observatory of Mt. Wilson succeeded
in observing about 20 km/sec. 2or the white dwarf. His result sup-
ported the Einstein’s theory of general relativity. Now, notwith-
standing the author’s geometry adopted is different 2rom Einstein’s,
the author’s result (3.8) coincides with Einstein’s, so that Adams’
data support equally the author’s theory.
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