20 [Vol. 31,

6. Dirichlet Problem on Riemann Surfaces. V
(On Covering Surfaces)

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KuNUGI, M.J.A., Jan. 12, 19565)

1) Covering Surfaces over a Null-Boundary Riemann Surface

Let R be a null-boundary Riemann surface and let B be a
covering surface of F-type over BR. We denote by U(R, B*) the set
of all A.B.P.’s of R. Let % be a closed set of A(R, B*). The upper
class Uy is the set of all non negative continuous super-harmonic
functions U(2) such that lim U(2)=1 along every curve tending to

%F. We denote by I:I—g(z) the lower envelope of U§. Similarly the
lower class B is the class of all bounded continuous sub-harmonic
functions V(2) such that lim V(2)<0 along every curve tending to

the boundary except &. Further it is clear that ﬁg(z);_f_lg(z) on a
covering surface of D-type. If they coincide at one point of R.
Then they are identical.

Lemma. Let & be a closed set of U(R, B*) of a covering surface
of F-type. Then

HE@)=HE®).

Proof. We map the universal covering surface B” of R onto
the unit cirecle U::|&|<1. Since by assumption, the mapping func-
tion f(¢): R~ R+U(R, B*) has angular limits almost everywhere on
|€|=1 and since u(R,B)=0, where wu(R,B) is the outer harmonic
measure of the boundary of R lying on the boundary of B. We can
suppose that f(¢) has angular limits lying in B. Let &, be the

set of points of R+%A(R, R*) which have distance _<_l from §. Put

n

Fo=3LNUR, B*) and let F be the regular image' of F. Then,
gince R is a covering surface of F-type, F, is measurable and f(&)
has angular limits at F), where mes|F,—F,|=0. Thus we can
suppose f(§) has angular limits at F,. Let {R,} be an exhaus-
tion of B with compact relative boundaries {OR,} and let 9%, be
the relative boundary of %/,. Let o”,..(2) be a harmonic function
in Ry.— @&, N (Bpyi—Ry)) such that of,,..;(2)=1 on (F, N(Rm+i— Lw))
and o), ...(2)=0 on OR,,,—&.,. Then we see that o&,..(2)71
on(?) and wn(2) § 0"(2). Thus »™(2) is contained in the class U for

1) See, ‘“Dirichlet problem. III”’.
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every n and w(2)=lim 0"(z)=HZ(). On the other hand f(¢) has

angular limits not contained in & almost everywhere on CF, where
lim F,=F and CF is the complementary set of F' with respect to

161=1. We show w(2) has angular limit zero almost everywhere on

CF. If it were not so, we can find a closed set E of positive

measure in CF,, because lim|mes|F,—F'||=0, such that «(z) has
n

an angular limit §(8>0) on E. Let D, be a domain containing an

angular end-part: | arg (l—e""&)|<321—80 at every point § of £ and

let C(r) be a circle such that |&§|<r. Since the mapping function
has angular limits contained in B almost everywhere on CF,, f(§)
tend to A.B.P.’s outside of &, in angular domain. Hence there
exists r, n, and a closed set E'(CFE) such that, if § € (Dw N (U.—C (7)),
then f(§) ¢ ! (n=mn,). As to the mapping B*— U, K;; is mapped onto
the simply connected domain containing £=0. Hence the image
of oL (n>mn,) does not fall in Dy (Ue—C(r)). Since Dz (U:—C(r))
is composed of at most a finite number of domains, there exists at
least one component D’ with the property that D% has a set on
|&1=1 of positive measure as its boundary. Since the boundary of
DY, is rectifiable, there exists a harmonic function &(§) such that
#(&)=1 on the boundary of D% except one lying on |[§|=1 and
#(8)=0 on the boundary of D% lying on [§]|=1. Consider «?,..:(?)
on D%. Then we see by the maximum principle that «7,...()=&(8).
Let ¢—o and then m,n—>«. We have o()=&(§). This contradicts
that »(2) has an angular limit zero. Hence »(z)=0 almost everywhere
on CF. Let w(U,, F') be the harmonic measure of . Then we have
o(U;, F)=HZz), and the inverse inequality is clear.

Put £,=R—3! and let J* be the domain where HE(z)>1 and
put T*"=9,NJ*. Let o). (2) be a harmonic function in R, —
(Rpss—Ry)NT2) such that w)?..()=1 on (Rn..— R, NT*™) and
onmit(®)=0 on R, ,—T™". Then w)..(2) 1 op’(2) and wp*(2) § ©™(2).
As above, we can prove that »*”(z) has angular limit zero almost

everywhere on F,,. On the other hand since w*'”(z)<%ﬁ§(z), o™"(?)

has angular limit zero on CF,. Therefore »*>*(2)=0. Thus we can
easily construct a super-harmonic funetion W(z) such that W(z)= co
at every point of the boundary defined by a non compact domain
> :\;_.‘T””, because every T*" determines a set of outer harmonic
:ﬁg;;ilre zero.” Then it is clear that ﬁg(z)~e W(2) is contained in

% class for every positive number ¢. Hence H 5(2) < Hi(2). Thus

2) See, ‘“Harmonic measures and capacity. 1.
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HER)=HE#)=w(U, F). Similarly, for open set 2 of (R, R), we
have HZE(z)=HE®).

Let p(p):p ¢ AR, R*) be a real valued funetion. Define the
upper class UF consisting of all the lower bounded continuous super-
harmonic functions such that lim #(z)=¢(£) and let its lower envelope
by P_IZ‘(z). We also define the lower class and its upper envelope
H2(z). If HF(z)=HZFz) holds, then o (f£) is called a resolutive
boundary function and we denote the common envelope by HZ(z).

Theorem 5.1. Let R be a covering surface of F-type and let
p(P) be semi-continuous function. Then () is resolutive.

Proof. Let o(f):M=¢p(f£)=m be an upper (lower) semi-
continuous function on A(R, R*) and divide the interval [m, M ] into
M—m

sub-intervals such that m=c,<e¢;,...,ca=M, and ¢;.;—c,=

n
Denote the set f{¢)(4€))gc¢} by A4, which is closed and f{cmgq)(@)
>c;} by E; respectively. Let U, and Bj be the upper and the lower
classes of the characteristic function of A;. Put Uy, (2)=U,(2)— V., (?)
(Ve (2)=V.4@)— Us,,(2)), where U,(2)(V.(2)) is a function contained
in the class Us(B.4). Then Uz (2)(Vz(?)) is super(sub)-harmonic and
grg Uz (2)=1 (nggi Vz(2)=<0). Thus Ug(2)(Vz,(2)) is contained in the

n—1 n
class Ug(Bg,). Hence Ug(z)= ;ﬂ c+1Ug(2) (VH(2)= iz_l ¢, Vg(2)) is con-

tained in the class UF(BE) but the lower envelope Flﬁ(z)(_,ﬁ(z)) of
Us(Bg,) is equal to the harmonic measure of the image of E; on
1él=1. Thus we have

(U;’(z)—V;‘(z))g% gw(UE,Et), let n—>co. Then

HX@)=HX@) = [ ¢ dn,

where u is the harmonic measure.

From the general theory of Dirichlet problem, we have next

Lemma. HF(z) is the upper envelope of HE(2), where ¥r<¢p and
Y 18 upper bounded and semi-continuous on U(R, R*). The similar
Sact holds for HZ().

In the same manner used by M. Brelot, we have

Theorem 5.2. In order that o(f) is resolutive, it is necessary
and sufficient that o(£) is integrable in the narrow sense.

2)  Covering Surfaces over a Positive Boundary Riemann Surface
Let R be a positive boundary Riemann surface, G(z, z,) be the
Green’s function and let A(2) be its conjugate. Put k(z)=e 9.

We define the length of a curve L by f dk(z) and the distance be-
L
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tween two points 2z, and 2z, by the lower limit of the lengths of all
curves L connecting 2z, with 2z, in B. Then we have a metric space
R* by completion of this metric. Let R be a covering surface over
R. The distance between two points 2z, and 2, of B is defined by
the diameter of the projection of all curves connecting 2, with 2,
in E. We map the universal covering surface B> of R onto the
unit circle U.:1§|<1 and let f(§) be the mapping function from
R> to R*. If a curve [, on R tends to the boundary of R and its
projection tends to a point R*, we say that [/, determines an A.B.P.
which means that the composed function R*—R->k(z)=w, has limit
w, on the w-plane along the image /. of [, on B*. Since |[k(z)|<1,
the image /. tends to a point on |§|=1 where U.-— w-plane has an
angular limit w, whence U.—R* has an angular limit. Since
S (&)= w is bounded, it follows that E — R* has angular limits almost
everywhere on |§|=1. Thus R is a covering surface of F-type.
Let A be the image of AR, R*) and F' be the image of a closed
set J of AR, B*). Then we see that they are measurable. Hence
we have the same results about the Dirichlet problem as in the
case when R is a null-boundary Riemann surface.

8) Covering Surface of Finite Number of Sheets

Let R be a positive boundary Riemann surface. We have intro-
duced A-topology on an abstract Riemann surface B. Then R is a
metric space B*. In this topology, every boundary component is one

point. We define the length of a continuous curve L by HTlEnjlgt,
=1

2«11, where {z,} are points of L and |z2,, 2., | is the distance between
2, and 2., in A-topology. We introduce another topology as follows:
If a curve L tends to a point p of B* and the Green’s function

G(z, 2,) has a limit v, when 2z tends to p along L. We say that L

determines a point 2z of R**. Let G;(2) be the domain of R in
which v,+6,>G(2, 2,)>v,—8,. Let 2, and 2z, be two points of R**.
Then G, (2,) 2 2, for sufficiently large number §,. Connect 2, and z,
by a curve L in G;,(2,) and denote by A(L) the diameter of L. Put
8;=inf A(L) of all curves above-mentioned. It is clear that §, in-
creases when 8; decreases. We define the distance between 2z, and
2, by inf(5,+85,). The topology by this metric will be called B-
topology and R** is also a metric space.

It is clear that B-topology is the same as the original topology
when R** is restricted in R, because G(,2,) is continuous in E.
Let R be a covering surface over B. If a continuous curve L con-
verges to the boundary of R and its projection tends to a point of
R** we say that L determines an A.B.P. The distance between
2z, and 2z, is defined as usual by the lower limit of the diameter in
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B-topology of the projection of all curves connecting z; and 2, in R.
Thus we have a metric space R**=R+A(R, R**) from R by the
completion of this metric, where A(R, B**) is a set of all A.B.P.’s
of R.

Theorem 5.3. Let R be a covering surface of finite number of
sheets over R. Then A.B.P.’s are regular for Dirichlet problem
except possibly for a set whose projection is a set of capacity zero.

Proof. Let $£ be an A.B.P. of R** whose projection is 2’ of
R** such that G,(g, 2,)=0 in B-topology. Denote by V,,(2") a neigh-

bourhood with radius ;1{ in A-topology and denote by G,,(2") a domain
in which G(z, g°)<—217;. We can find a neighbourhood V’(2’) in V,.(2")
with a compact relative boundary oV’(z’). Hence 12\/£ia¥,1,(G(z, 2))=8>0.
Put Min [, G(z,20)]=DBu(2) in V'(z) and B,(2)=8 in R**—V'(¢/). Let
V(") be a neighbourhood of 2 in B-topology with radius %, and

let Vi, (2') be a component of (G,,()Vu(2') containing an end-part of
the curve determining 2. Then clearly V., (2" )TV, *(2') and G(z,z,)
> Min [8, %}2327; on the boundary of (G.,(\V:.(?')), whence B,(?)
7
=8(>0) in (B**—V;¥(')). On the other hand G(z,z,) tends to zero,
when 2z tend to 2. Put B(2)= ZQB:((;) Then B(z) is a barrier
at 2. Put B(R)=B() on R. Then B(2) is a barrier at #. Let
{R,} be an exhaustion of B and let 4, be a set of A.B.P.’s whose
projection are contained in R,. We can prove as the previous®
that A, are regular except possibly for a set whose projection is a
set I, of capacity zero. On the other hand the set B, of ideal
boundary defined by a non compact domain D, of R in which G(z, 2,)
>2(A>0) is a set of capacity zero.” Therefore the projection of
irregular A.B.P.’s are contained in B, or >)I,. Hence we have
==
the theorem.
Since R is a covering surface of F-type over R**. We can prove
also E,R(z):ﬂ,f(z) for a semi-continuous function on U(R, B**) by the
same method in the previous.

The topology in 2) is more precise than that of 8) but at present
we cannot introduce the notion of regular point on this topology.

3) See, ‘Dirichlet problem. IV .
4) See, ‘“Harmonic measures and capacity. I,



