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6. Dirichlet Problem on Riemann Surfaces. V
(On Covering Surfaces)

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1955)

1) Covering Surfaces over a Null-Boundary Riemann Surface
Let _R be a null-boundary Riemann surface and let R be a

covering surface of F-type over __R. We denote by (R, *) the set
of all A.B.P.’s of R. Let be a closed set o /(R, _R_*). The upper
class U is the set of all non negative continuous super-harmonic
2unctions U(z) such that lira U(z)l along every curve tending to. We denote by H(z) the lower envelope of U. Similarly the
lower class B is the class of all bounded continuous sub-harmonic
functions V(z) such that lira V(z)O along every curve tending to

R HRthe boundary except Further it is clear that H(z)(z) on a
covering surface of D-type. If they coincide at one point of R.
Then they are identical.

Lemma. Let be a closed set of 2(R, R__* of a covering surface
of F-type. Then

H(z)--H(z).
Proof. We map the universal covering surface R of R onto

the unit circle U" $ I< 1. Since by assumption, the mapping func-
tion f($)" .->R+(R, R*) has angular limits almost everywhere on
]$I=1 and since I(R,B)--O, where #(R,B) is the outer harmonic
measure of the boundary of R lying on the boundary of R. We can
suppose that f($)has angular limits lying in __R. Let be he

set of points of R+ (R, .__R*) which have distance 1__ from . Put
n

.=((R,R*) and let F be the regular image of . Then,

.since R is a covering surface of F-type, F is measurable and f()
has angular limits at F;, where mes lF-Fl--0. Thus we can
suppose f($)has angular limits at F. Let [Rt be an exhaus-
tion of R with compact relative boundaries [R} and let be
the relative boundary of . Let ,0,/(z) be a harmonic function
in R/-() ) (R/-R)) such that ,,/(z) -1 on (((R/-R))
and ,/(z) 0 on R+, ’-,. Then we see that .+(z)’
o(z) and (z) ’(z). Thus o(z) is contained in the class U or

1) See, "Dirichlet problem. III"
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every n and o(z)- lim (z) :> H(z). On the other hand f($) has

ang,uIar limits not contained in almost everywhere on CF, where
lim F=F and CF is the complementary set of F with respect to

1 l-1. We show (z)has angular limit zero almost everywhere on
CF. If it were not so, we can find a closed set E of positive
measure in CF, because limmesF-F[]=0, such hat (z) has

an angular limit 8(>0) on E. Let D be a domain containing an

angular end-part: [arg(1-e-)<-0 at every point of E and

let C(r) be a circle such that l$<r. Since the mapping function
has angular limits contained in almost everywhere on CF,, f($)
tend to A.B.P.’s outside of in angular domain. Hence there
exists r, no and a closed set E’(E) such that, if $ e (D, (U-C(r)),
then f($) (n n0). As to the mappingRU, R: is mapped onto
the simply connected domain containing $-0. Hence the image
of (n>no) does not fall in D,5 (U-C(r)). Since D, (U-C(r))
is composed of at most a finite number of domains, there exists at
leas one component D, with the property that D, has a set on
$1--1 of positive measure as its boundary. Since the boundary of
D, is rectifiable, there exists a harmonic function () such that
&($)=1 on the boundary of D, except one lying on $1--1 and
($)--0 on the boundary of D, lying on $1--1. Consider ,+(z)
on D,. Then we see by the maximum principle that ,+(z)&($).
Let i and then m,n. Wehave(z)($). This contradicts
that (z) has an angular limit zero. Hence (z)-0 almost everywhere
on CF. Let (U, F) be the harmonic measure of F. Then we have

(U, F)--H(z), and he inverse inequality is clear.

Put 9=R- and let J be the domain where H(z)> and
put T’-Q- J. Let ,,,+’(z be a harmonic unction in R+-
((R+ R) T,) such that ’ (R+-,+(z)= 1 on R) T’) and

,+t(z) ,(z) and ’(z) (z).,,+(z)--O on R+-T’. Then ’ ’As above, we can prove that +z,(z) has angular limit zero almost

everywhere on F, 0n the other hand since z,’(z) <f z

has angular limit zero on CF,. Therefore ,(z)0. Thus we can
easily construct a super-harmonic function W(z)such that W(z)-
at every point of the boundary defined by a non compact domain

T’, because every T," determines a set o2 outer harmonic
>o
measure zero. Then it is clear ht H(z)-W(z) is contained in

RB class for every positive number e. Hence H(z)< (z). Thus

2) See, "Harmonic measures and capacity. I ".
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H(z)=H(z)-o(U, F). Similarly, for open set 9 of I(R, R), we

have H(z) (z).
Let o(). e ?I(R, g*) be a real valued function. Define the

upper class U consisting of all the lower bounded continuous super-
harmonic functions such that lim u(z)()and let its lower envelope

by H(z). We also define the lower class and its upper envelope

(z). If H(z)=(z) holds, then () is called a resolutive
boundary function and we denote the common envelope by H(z).

Theorem 5.1. Let R be a covering surface of F-type and let
() be semi-continuous function. Then ( is resolutive.

Proof. Let ()" M () m be an upper (lower) semi-
continuous function on I(R, *) and divide the interval m, MJ into

sub-intervals such that re=c0< c,..., c.=M, and c,+-c= M-m
n

Denote the set 8[()c,} by A, which is closed and [c+(p)
>c} by E: respectively. Let U, and B,, be the upper and the lower
classes of the characteristic function of A,. Put U,(z)= Ua,(z)-- V,+(z)
(V,(z)= V.,(z)- U,+(z)), where Ua,(z)(V,(z)) is a function contained
in the class Ua,(B.4,). Then Ur,(z)(V,(z)) is super(sub)-rmonic and
lim Ur,(z)= 1 (lim V,(z)O). Thus U,(z)(V,(z)) is contained in the

C

class U,(B). Hence U(z)= c,+ U(z) ( V#(z)- c, V,(z)) is con-

Cained in the class U (B) but the lower envelope H,(z)(,(z)) of
U,(B,) is equal to the harmonic measure of the image of E, on
I$I=1. Thus we have

v3(z)) (U, E,), let n. Then
=o

f
where is the harmonic meure.

From the general theory of Dirichlet problem, we have next
Lemma. H(z) is the upper envelope of Hz), where < and

is upper bounded and semi-continuous on ?$(R, *). The similar

fact holds for H(z).
In the same manner used by M. Brelot, we have
Theorem 5.2. In order that ( is resolutive, it is necessary

and sucient that ( is integrable in the narrow sense.

2) Covering Surfaces over a Positive Boundary Rienn Surface
Let be a positive boundary Riemann surface, G(g, o) be the

Green’s function and let h() be its conjugate. Put k()--e-a-’a.

We define the length of a curve by fgk(z) and the distance be-
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tween wo po,ints z and _z by the lower limit of the lengths of all
curves L connecting _z with z in R. Then we have a metric space
R* by completion of this metric. Let R be a covering surface over
R. The dista-nce between two points z and z of R is defined by
the diameter of the projection of all curves connecting z with z.
in R. We map the universal covering surface R" of R onto the
unit circle U" I$1<1 and let f($) be the mapping function from
R" to R*. If a curve l on R tends to the boundary of R and its
projection tends to a point R*, we say that lo determines an A.B.P.
which means that the composecl function R-->R-k(z)-w, has limit

Wo on the w-plane along the image l of l on R. Since
the image l tends to a point on ! I-1 where U-->w-plane has an
angular limit Wo, whence U-R* has an angular limit. Since
f($)--> w is bounded, it iollows that R - R* has angular limits almost
everywhere on 151=1. Thus R is a covering surface o2 F-type.
Let be the image of ?.(R,R*) and F be the image o a closed
set of ,:[(R, R*). Then we see that they are measurable. Hence
we have the same results about the Dirichlet problem as in the
case when . is a null-boundary Riemann surface.

3) Covering Surface of Finite Number of Sheets
Let __R be a positive boundary Riemann surface. We have intro-

,duced A-topology on an abstract Riemann surface R__. Then R is a
metric space *. In this topology, every boundary component is one

point. We define the length of a continuous curve L by lim lz_,

z ], where [_z} are points of L and ]_z, _z+l is the distance between
.z_ and g/ in A-topology. We introduce another topology as 2ollows:
If a curve _L tends to a point p oi R* and the Green’s unction

G(_z,z_0) has a limit % when z tends to p along L. We say that L
determines a pint z_ of _R_**. Let G(z_) be the domain of in
which /+>G(z_,zo)>/-. Let z and _z be two points of R**.
Then G((z) _z. for sufficiently large number . Connect z and _z
by a curve L in G(z) and denote by A(_L) the diameter of L_. Put
=inf A(L_L_) of all curves above-mentioned. It is clear that $ in-
,creases when ; decreases. We define the distance between z and
_z. by inf(+). The topology by this metric will be called B-
topology and __R** is also a metric space.

It is clear hat B-topology is the same as the original topology
when _R** is restricted in R, because G(_z, Zo)is continuous in R.
Let R be a covering surface over __R. If a continuous curve L con-
verges to the boundary of R and its projection tends to a point of
R_R_**, we say that L determines an A.B.P. The distance between
z and z. is defined as usual by the lower limit of the diameter in
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B-topology of the projection of all curves connecting z and z in R.
Thus we have a metric space R**-R+ (R, R__**) from R by the
completion of this metric, where :(R, R_**) is a set of all A.B.P.’s
of R.

Theorem 5.3. Let R be a covering surface of finite number of
sheets over R__. Then A.B.P.’s are regular for Dirichlet problem
except possibly for a set whose projection is a set of capacity zero.

Proof. Let be an A.B.P. of R** whose projection is z_ of
__R** such that G (z_, z0)=0 in B-topology. Denote by V(z_’) a neigh-

bourhood with rdius __1_ in A-topology and denoCe by G(z_) a domain
n

in which G(z_, z)< 1 We can find a neighbourhood V’(z_) in
2n

with a compact relative boundary W(z_). Hence Min (G(z,
Put Min [, G(_z, Zo)-B(z_) in V’(z_) and B(z_)=t in R__**- V’(z_). Let

V*(z) be a neighbourhood of z in B-topology with radius 1 and
n

V (z be a component o2 (G, V,(z) containing an end-part oflet
_

the curve determining z. Then clearly V,(z_ )V*(z_) and G(, Zo)
1 1_$ on the boundary of (GY-(z’)), whence B(z)Min ,

$’(>0) in (R**-V*(z_’)). On the other hand G(z_,Zo) tends to zero,
B.(z)when z_ tend to _zr. Put B(z)-.--.3,--" Then B(z) is a barrier

at z. Put B(z)-B(z_) on R. Then B(z) is a barrier at . Le
{R} be an exhaustion of R and let A be a set of A.B.P.’s whose
projection are contained in R. We can prove as the previous8

that A are regular except possibly for a set whose projection is a
set I, of capacity zero. On the other hand the set B of ideal
boundary defined by a non compact domain D of in which G(z,
>(2>0) is a set of capacity zero. ") Therefore the projection of
irregular A.B.P.’s are contained in Bz or -,I. Hence we have

the theorem.
Since R s a covering suraee o F-ype over **. We can prove

also /r(z)-_H(z) or a semi-continuous unetion on (R, **) by the
same method in the previous.

The topology in ) is more precise than that o 3) but at present
we cannot introduce the notion o regu]ar point on his topology.

3) See, "Dirichlet problem. IV ".
4) See, Harmonic measures and capacity. II"


