24. On the Strong Summability of the Derived Fourier Series. II

By Shin-ichi Izumi and Masakiti Kinukawa
Mathematical Institute, Tokyo Metropolitan University, Japan (Comm. by Z, Suetuna, m.J.A., March 12, 1955)

1. B. N. Prasad and U. N. Singh [1] have proved the following

Theorem 1. Let $f(t)$ be a continuous function of bounded variation, with period 2π, and let

$$
g_{x}(u)=g(u)=f(x+u)-f(x-u)-2 u s,
$$

then, if

$$
\begin{equation*}
\int_{0}^{t}|d g(u)|=O\left[t /\left(\log \frac{1}{t}\right)^{1+\varepsilon}\right] \quad(t \rightarrow 0) \tag{1}
\end{equation*}
$$

for a positive ε, then the derived Fourier series of $f(t)$ is strongly summable (or H_{1}-summable) to s at x, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\nu=1}^{n}\left|\tau_{\nu}(x)-s\right|=0 \tag{2}
\end{equation*}
$$

$\tau_{n}(x)$ being the n-th partial sum of the derived Fourier series of $f(x)$.
In the first paper [2], one of us proved that under the assumption of Theorem $\mathbf{1}^{1)}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\nu=1}^{n}\left|\tau_{\nu}(x)-s\right|^{b}=0, \tag{3}
\end{equation*}
$$

for any $k>0$. But in its proof it is used, without stating explicitly, that the summability $\left(H_{k}\right)$ is the local property for the derived Fourier series of $f(x)$. This is true by Wiener's theorem (A. Zygmund [6], p. 221).

We shall now consider an extension of Theorem 1 in the case $k \leqq 2$. In fact we shall prove

Theorem 2. If

$$
\begin{equation*}
\int_{0}^{t}|d g(u)|=O\left[t /\left(\log \frac{1}{t}\right)^{\alpha}\right] \quad(t \rightarrow 0) \tag{4}
\end{equation*}
$$

then

$$
\lim \frac{1}{n} \sum_{\nu=1}^{n}\left|\tau_{\nu}(x)-s\right|^{2}=0 \quad \text { for } \quad \alpha>1 / 2
$$

This is the analogue of Wang's theorem for Fourier series [3]. We can also prove the following
Theorem 3. In Theorem 2, if the condition (4) is replaced by

[^0]\[

$$
\begin{equation*}
\int_{0}^{t}|d g(u)|=o(t) \tag{5}
\end{equation*}
$$

\]

then

$$
\sum_{\nu=1}^{n}\left|\tau_{\nu}(x)-s\right|^{2}=o(n \log n)
$$

This is the analogue of the Hardy-Littlewood theorem for the Fourier series [4] (cf. [5]). We shall omit the proof, since we can prove it by the similar method as Theorem 2.
2. Proof of Theorem 2. We can replace O in (4) by o, and then for any ε, there is a δ such that

$$
\int_{0}^{t}|d g(u)|<\varepsilon t /\left(\log \frac{1}{t}\right)^{\alpha} \quad(0<t<\delta)
$$

Let us put

$$
g(u)=g_{1}(u)+g_{2}(u)
$$

where

$$
\begin{aligned}
g_{1}(u) & =g(u) \text { in }(0, \delta / 2), \\
& =0 \quad \text { in }(\delta, \pi)
\end{aligned}
$$

and $g_{1}(u)$ is linear in $(\delta / 2, \pi)$ and is continuous in $(0, \pi)$. Hence $g_{1}(u)$ is also a continuous function of bounded variation which vanishes in the interval ($0, \delta / 2$).

We can easily see that

$$
\begin{align*}
& \tau_{n}(x)-s=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin (n+1 / 2) t}{2 \sin t / 2} d g(t) \tag{6}\\
&=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin (n+1 / 2) t}{2 \sin t / 2} d g_{1}(t)+\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin (n+1 / 2) t}{2 \sin t / 2} d g_{2}(t) \\
&=\eta_{n}+\zeta_{n}
\end{align*}
$$

say. Since ζ_{n} is n times of the n-th Fourier coefficient of a continuous function of bounded variation, we obtain

$$
\begin{equation*}
\frac{1}{n} \sum_{\nu=1}^{n}\left|\zeta_{\nu}\right|^{2}=o(1) \tag{7}
\end{equation*}
$$

by the Wiener's theorem.
We have also

$$
\begin{aligned}
\sum_{v=1}^{n}\left|\eta_{\nu}\right|^{2}= & \frac{4}{\pi^{2}} \int_{1 / n}^{\delta} \int_{1 / n}^{\delta} \frac{d g_{1}(u)}{u} \frac{d g_{1}(v)}{v} \frac{\sin n(u-v)}{u-v}+o(n) \\
= & \frac{4}{\pi^{2}}\left\{\int_{1 / n}^{\delta} \frac{d g_{1}(u)}{u} \int_{u}^{\delta} \frac{d g_{1}(v)}{v} \frac{\sin n(u-v)}{u-v}\right. \\
& \left.+\int_{1 / n}^{\delta} \frac{d g_{1}(u)}{u} \int_{1 / n}^{u} \frac{d g_{1}(v)}{v} \frac{\sin n(u-v)}{u-v}\right\}+o(n) \\
= & \frac{4}{\pi^{2}}\left(I_{n}+J_{n}\right)+o(n)
\end{aligned}
$$

say. Let us now estimate I_{n}. We write

$$
\begin{aligned}
I_{n} & =\int_{1 / n}^{\delta} \frac{d g_{1}(u)}{u}\left\{\int_{u}^{\Sigma u}+\int_{2 u}^{\delta}\right\} \frac{d g_{1}(v)}{v} \frac{\sin n(u-v)}{u-v} \\
& =I_{n}+I_{n}^{2} .
\end{aligned}
$$

Then

$$
\left|I_{n}^{2}\right| \leqq A \int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u} \int_{2 u}^{\delta} \frac{\left|d g_{1}(v)\right|}{v^{2}}
$$

where the inner integral becomes, by integration by parts,

$$
\begin{aligned}
\int_{2 u}^{\delta} \frac{\left|d g_{1}(v)\right|}{v^{2}} & =\left[\frac{G(v)}{v^{2}}\right]_{2 u}^{\delta}+2 \int_{2 u}^{\delta} \frac{G(v)}{v^{3}} d v \\
& \leqq \frac{4 \varepsilon}{u(\log 1 / u)^{\alpha}}+\frac{2 \varepsilon}{\delta(\log 1 / \delta)^{\alpha}} \leqq \frac{A \varepsilon}{u(\log 1 / u)^{\alpha}},
\end{aligned}
$$

where $G(v)=\int_{0}^{v}\left|d g_{1}(w)\right|$. Hence

$$
\begin{aligned}
\left|I_{n}^{2}\right| & \leqq A \varepsilon \int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u^{2}(\log 1 / u)^{\alpha}} \\
& =A \varepsilon\left[\frac{G(u)}{u^{2}(\log 1 / u)^{\alpha}}\right]_{1 / n}^{\delta}+A \varepsilon \int_{1 / n}^{\delta} \frac{G(u)}{u^{3}(\log 1 / u)^{\alpha}} d u \\
& \leqq A \varepsilon^{2} \frac{n}{(\log n)^{2 \alpha}}+A \varepsilon^{2} n \int_{1 / n}^{\delta} \frac{d u}{u(\log 1 / u)^{2 \alpha}} \leqq A \varepsilon^{2} n
\end{aligned}
$$

Concerning I_{n}^{1}, we have

$$
\begin{aligned}
I_{n}^{1} & =\int_{1 / n}^{\delta} \frac{d g_{1}(u)}{u}\left\{\int_{u}^{u+1 / n}+\int_{u+1 / n}^{2 u}\right\} \frac{d g_{1}(v)}{v} \frac{\sin n(u-v)}{u-v} \\
& =I_{n}^{1, t}+I_{n}^{1,2},
\end{aligned}
$$

where

$$
\begin{aligned}
\left|I_{n}^{1,1}\right| & \leqq n \int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u} \int_{u}^{u+1 / n} \frac{\left|d g_{1}(v)\right|}{v} \\
& \leqq \varepsilon n \int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u(\log 1 / u)^{\alpha}} \leqq A \varepsilon^{2} n \int_{1 / n}^{\delta} \frac{d u}{u(\log 1 / u)^{2 \alpha}} \leqq A \varepsilon^{2} n
\end{aligned}
$$

and

$$
\left|I_{n}^{1,2}\right| \leqq \int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u} \int_{u+1 / n}^{2 u} \frac{\left|d g_{1}(v)\right|}{v(v-u)}
$$

Since $\frac{1}{v(v-u)}=\frac{1}{u}\left(\frac{1}{v-u}-\frac{1}{v}\right)$, we obtain

$$
\begin{aligned}
\left|I_{n}^{1,2}\right| & \leqq \int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u} \int_{u+1 / n}^{\imath u} \frac{\left|d g_{1}(v)\right|}{v}+\int_{1 / n}^{\delta} \frac{\left|d g_{1}(u)\right|}{u} \int_{u+1 / n}^{2 u} \frac{\left|d g_{1}(v)\right|}{v-u} \\
& =I_{n}^{1,2,1}+I_{n}^{1,2,2},
\end{aligned}
$$

where

$$
I_{n}^{1,2,1} \leqq I_{n}^{1,2,2} \leqq A \varepsilon \int_{1 / n}^{\delta}\left|d g_{1}(u)\right| \frac{n u}{u^{2}} \frac{n u}{(\log 1 / u)^{\alpha}} \leqq A \varepsilon^{2} n
$$

Thus we have proved that

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{n} \sum_{\nu=1}^{n}\left|\eta_{\nu}\right|^{2} \leqq A \varepsilon^{2} .
$$

By (6) and (7)

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{n} \sum_{\nu=1}^{n}\left|\tau_{\nu}(x)-s\right|^{2} \leqq A \varepsilon .
$$

Since ε is arbitrary, we get the required result.
We have first proved Theorem 2 for the case $k=1$. By the remark of T. Tsuchikura, we have gotten the case $k \leqq 2$. We express him our hearty thanks.

References

[1] B. N. Prasad and U. N. Singh: On the strong summability of the derived Fourier series and its conjugate series, Math. Zeits., 56, 280-288 (1952).
[2] M. Kinukawa: On the strong summability of the derived Fourier series, Proc. Japan Acad., 30, 801-804 (1954).
[3] F. T. Wang: Note on H_{2} summability of Fourier series, Jour. London Math. Soc., 19, 208-209 (1944).
[4] G. H. Hardy and J. E. Littlewood: The strong summability of Fourier series, Fund. Math., 25, 162-189 (1935).
[5] T. Kawata: A proof of a theorem of Hardy and Littlewood concerning strong summability of Fourier series, Proc. Imp. Acad., 15, 243-246 (1939).
[6] A. Zygmund: Trigonometrical series (1935).

[^0]: 1) In [2], $\tau_{\nu}^{*}(x)$ may be replaced by $\tau_{\nu}(x)$ and the last section, containing Theorems 3 and 4 , must be omitted.
