49. Integrability of Trigonometrical Series. II

By Masako Satô
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., April 12, 1955)

1. We shall consider the trigonometrical series

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \tag{1}
\end{equation*}
$$

Given a sequence $c_{0}, c_{1}, c_{-1}, \ldots$ such that $c_{n} \rightarrow 0$, let $c_{0}^{*} \geqq c_{1}^{*} \geqq c_{-1}^{*} \geqq$ $c_{2}^{*} \geqq \cdots$ be the sequence $\left|c_{0}\right|,\left|c_{1}\right|,\left|c_{-1}\right|, \ldots$ arranged in the descending order of magnitude.

Recently R. P. Boas [1] proved the following
Theorem B. If $1<q \leqq 2,1 \leqq p<q /(q-1)$, and $\alpha<1-q / p^{\prime}$, then (1) is the Fourier series of a function of L^{p} if $c_{n} \rightarrow 0$ and

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left|c_{n+m}-c_{n-m}\right|^{q}=O\left(m^{\alpha}\right) \tag{2}
\end{equation*}
$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.
If $\alpha \geqq 1-q / p^{\prime}$ the conclusion no longer holds.
In this paper we prove the following theorems.
Theorem 1. If $q \geqq 2, p \geqq 1$, and $0<\alpha<q / p-1$, then (1) is the Fourier series of a function of L^{p} if $c_{n} \rightarrow 0$ and

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left(c_{n+m}-c_{n-m}\right)^{* q} n^{q-2}=O\left(m^{\alpha}\right) \tag{3}
\end{equation*}
$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.
If $\alpha=q / p-1, \alpha>q-2$, the conclusion no longer holds.
Theorem 2. If $q \geqq 2, p \geqq 1, q^{\prime} \leqq r \leqq q, \mu=1 / r+1 / q-1$, and $0<\alpha<q / p-1$, then (1) is the Fourier series of a function of L^{p} if $c_{n} \rightarrow 0$ and

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left|c_{n+m}-c_{n-m}\right|^{r}(|n|+1)^{-\mu r}=O\left(m^{a r / q}\right) \tag{4}
\end{equation*}
$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.
If $\alpha \geqq q / p-1$ the conclusion no longer holds.
In Theorem 2, if $r=q^{\prime}$ then it becomes Theorem B, and if $r=q$ then it becomes Theorem 1 except star. Hence Theorem 2 contains Theorem B formally but Theorems 1 and 2 are mutually exclusive.

The proofs of Theorems 1 and 2 are similar to that of Theorem B, the difference being to use the following Theorems HL 1 and HL 2 [2], respectively, instead of the Hausdorff-Young theorem. We prove here Theorem 1 only.

Theorem HL 1. If $q \geqq 2$ then (1) is the Fourier series of a function $f(x)$ of L^{q} and

$$
\left(\int_{-\pi}^{\pi}|f(x)|^{q} d x\right)^{1 / q} \leqq A_{q}\left\{\sum_{n=-\infty}^{\infty} c_{n}^{* q} n^{q-2}\right\}^{1 / q}
$$

where A_{q} depends on q only, if $c_{n} \rightarrow 0$ and

$$
\left\{\sum_{n=-\infty}^{\infty} c_{n}^{* q} n^{q-2}\right\}^{1 / q}<\infty .
$$

Theorem HL 2. If $q \geqq 2, q^{\prime} \leqq r \leqq q$, and $\mu=1 / r+1 / q-1$, then (1) is the Fourier series of a function $f(x)$ of L^{q} and

$$
\left(\int_{-\pi}^{\pi}|f(x)|^{q} d x\right)^{1 / q} \leqq A_{q}\left\{\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{r}(|n|+1)^{-\mu r}\right\}^{1 / r}
$$

where A_{q} depends on q only, if $c_{n} \rightarrow 0$ and

$$
\left\{\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{r}(|n|+1)^{-\mu n}\right\}^{1 / r}<\infty .
$$

2. Proof of the first part of Theorem 1. If (3) is satisfied for $m=k$, then by Theorem HL $1 c_{n+k}-c_{n-k}$ are the nth Fourier coefficients of a function $\varphi_{k}(t)$ of L^{q}, i.e.,

$$
c_{n+k}-c_{n-k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n t} \varphi_{k}(t) d t
$$

The function $\varphi(t)=\varphi_{k}(t) / \sin k t$ belongs to L^{q} except perhaps in neighbourhoods of the points $0, \pm \pi / k, \pm 2 \pi / k, \ldots, \pm \pi$. We have to show that $\varphi(t)$ actually belongs to L^{p} and has $\left(c_{n}\right)$ as its Fourier coefficients. Now if m is a multiple of $k, \varphi(t) \sin m t$ is integrable, and

$$
\begin{aligned}
\int_{-\pi}^{\pi} e^{-i n t} \varphi(t) \sin m t d t & =\int_{-\pi}^{\pi} e^{-i n t} \varphi_{k}(t) \frac{\sin m t}{\sin k t} d t \\
& =2 \pi\left(c_{n+m}-c_{n-m}\right) .
\end{aligned}
$$

Thus again by Theorem HL 1 we have

$$
\int_{-\pi}^{\pi}|\varphi(t) \sin m t|^{q} d t \leqq A_{q} \sum_{n=-\infty}^{\infty}\left(c_{n+m}-c_{n-m}\right)^{* q} n^{q-2}
$$

where A_{q} depends on q only.
We shall prove the integrability of $\varphi(t)$ in a neighbourhood of $t=0$.
$\mathrm{By}(3)$ and the inequality $\sin t \geqq 2 t / \pi$ for $0 \leqq t \leqq \pi / 2$

$$
\begin{aligned}
& \int_{0}^{1 / m}|\varphi(t)|^{q} t^{q} d t \leqq \frac{C}{m^{q}} \int_{-\pi}^{\pi}|\varphi(t) \sin m t|^{q} d t \\
& \quad \leqq \frac{C}{m^{q}} \sum_{n=-\infty}^{\infty}\left(c_{n+m}-c_{n-m}\right)^{* q} n^{q-2} \leqq C m^{\alpha-q}
\end{aligned}
$$

where C is an absolute constant. Since $|\varphi(t) \sin k t|^{q}$ is integrable, so is $t^{p}|\varphi(t)|^{p}, 1 \leqq p \leqq q$. We put

$$
F(t)=\int_{0}^{t} x^{p}|\varphi(x)|^{p} d x
$$

then for $\varepsilon<\pi / k$

$$
\begin{aligned}
\int_{1 / m}^{\varepsilon}|\varphi(t)|^{p} d t & =\int_{1 / m}^{\varepsilon} x^{-p} d F(x) \\
& =F(\varepsilon) \varepsilon^{-p}-F(1 / m) m^{p}-p \int_{1 / m}^{\varepsilon} F(x) x^{-p-1} d x .
\end{aligned}
$$

By Hölder's inequality with index q / p we have

$$
\begin{aligned}
F(1 / m) & =\int_{0}^{1 / m} x^{p}|\varphi(x)|^{p} d x \leqq\left\{\int_{0}^{1 / m} x^{q}|\varphi(x)|^{q} d x\right\}^{p / q} m^{-(q-p) / q} \\
& \leqq C m^{(\alpha-p) p-(q-p) / q}=o\left(m^{-p}\right),
\end{aligned}
$$

since $\alpha p<q-p$. Accordingly $F(1 / m) m^{p}=o(1)$. And further $F(t)$ is a non-decreasing function of t, if $m=r k$ (r an integer) and $1 /(r+1) k$ $\leqq t \leqq 1 / r k$, we have $F(t) \leqq C t^{u}(u>p)$. Thus $F(x) x^{-p-1}$ is dominated by the integrable function x^{u-p-1} in a neighbourhood of 0 , i.e.,

$$
F(x) x^{-p-1} \leqq C x^{u-p-1} .
$$

Thus we see that $\varphi(x)$ is L^{p} integrable in a neighbourhood of 0 . The same proof applies for the L^{p} integrability of $\varphi(x)$ in neighbourhoods of $\pm \pi / k, \pm 2 \pi / k, \ldots, \pm \pi$.
3. Proof of the second part of Theorem 1. We shall consider the series used by R. P. Boas [1]

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{t_{n x}}
$$

such that $c_{n}=n^{-r}(0<\gamma<1 / q)$ for $n>0, c_{n}=c_{-n}$, and $c_{0}=1$. Then $f(x)$ is of order x^{r-1} as $x \rightarrow 0$ and consequently belongs to L^{p} for $p<1 /(1-\gamma)$ and not for $p \geqq 1 /(1-\gamma)$.

We shall now estimate the order of the series

$$
\sum_{n=0}^{\infty}\left(c_{n+m}-c_{n-m}\right)^{* a} n^{q-2} \quad \text { as } m \rightarrow \infty .
$$

Writing $d_{n}=\left|c_{n+m}-c_{n-m}\right|$, we can see that $d_{m+1} \geqq d_{m} \geqq d_{m-1} \geqq d_{m-2}$, and more generally $d_{m+k} \geqq d_{m-k} \geqq d_{m+k+1}$ for $k \geqq \mu=(a m)^{\delta}$, where $\delta=\gamma /(\gamma-1)$ and $a=\gamma^{1 / r}$. Thus we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} d_{n}^{* *} n^{q-2} & \leqq\left(d_{m+1}^{q}+2^{q-2} d_{m}^{q}+3^{q-2} d_{m-1}^{q}+\cdots+(2 \mu)^{q-2} d_{m+\mu}^{q}\right) \\
& +\sum_{n=1}^{m-1} d_{n}^{q}(2 \mu+n)^{q-2}+\sum_{n=m+\mu+1}^{\infty} d_{n}^{q} n^{-2} \\
& \equiv S_{1}+S_{2}+S_{3}
\end{aligned}
$$

say. Then, if $\gamma q<1$,

$$
\begin{aligned}
S_{1} & =\left\{\left(1-\frac{1}{(2 m+1)^{r}}\right)^{q}+2^{q-2}\left(1-\frac{1}{(2 m)^{r}}\right)^{q}+3^{q-2}\left(1-\frac{1}{(2 m-1)^{r}}\right)^{q}\right\} \\
& +\sum_{k=2}^{\mu}\left\{(2 k)^{q-2}\left(\frac{1}{k^{r}}-\frac{1}{(2 m+k)^{r}}\right)^{q}+(2 k+1)^{q-2}\left(\frac{1}{k^{r}}-\frac{1}{(2 m-k)^{r}}\right)^{q}\right\} \\
& \leqq C \sum_{k=2}^{\mu} \frac{1}{k^{r q-q+2} \leqq C \mu^{-(r q-q+1)}=C m^{(-r q+q-1) r /(1-r)},} \\
S_{2} & =\sum_{n=1}^{m-\mu}\left(\frac{1}{|n-m|^{r}}-\frac{1}{(n+m)^{r}}\right)(2 \mu-n)^{q-2} \\
& \leqq C m^{q} \sum_{n=1}^{m-\mu} \frac{n^{q}}{(n+m)^{2 q}(m-n)^{r q}}(2 \mu+n)^{q-2} \\
& =C m^{q}\left(\sum_{n=1}^{m / 2}+\sum_{n=m / 2+1}^{m-\mu}\right) \frac{n^{q}}{(n+m)^{2 q}(m-n)^{r q}}(2 \mu+n)^{q-2} \\
& \leqq C m^{-r q+q-2} \sum_{n=1}^{m / 2} 1+C m^{q-2} \sum_{\mu<k \leq m / 2} k^{-r q}=C m^{q-r q-1}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{3} & =\sum_{n=m+\mu+1}^{\infty}\left(\frac{1}{|n-m|^{r}} \frac{1}{(n+m)^{r}}\right)^{q} n^{q-2} \\
& \leqq C m^{q} \sum_{n=m+\mu+1}^{\infty} \frac{n^{2 q-2}}{(n+m)^{2 q}(n-m)^{r q}} \\
& =C m^{q}\left(\sum_{n=m+\mu+1}^{2 m}+\sum_{n=2 m+1}^{\infty}\right) \frac{n^{2 q-2}}{(n+m)^{2 q}(n-m)^{r q}} \\
& \leqq C m^{q-2} \sum_{n=m+\mu+1}^{2 m} \frac{1}{(n-m)^{r q}}+C m^{q} \sum_{n=2 m+1}^{\infty} \frac{1}{(n-m)^{r q+2}} \\
& =C m^{q-r q-1} .
\end{aligned}
$$

Collecting above estimations, we obtain

$$
\sum_{n=1}^{\infty} d_{n}^{* q} n^{q-2}=O\left(m^{q-r q-1}\right),
$$

and hence, if we take γ such as $\alpha=q-\gamma q-1$, that is, $\gamma=1-(\alpha+1) / q$, then the condition (3) is satisfied, but since $q \gamma=q-\alpha-1$, we get $q \gamma<1$ when $q-2<\alpha$.

References

[1] R. P. Boas: Integrability of trigonometrical series II, Math. Zeits., 55, 183-186 (1952).
[2] G. H. Hardy and J. E. Littlewood: Some new properties of Fourier constants, Math. Ann., 97, 159-209 (1926); Jour. London Math. Soc., 6, 3-9 (1931).
[3] A. Zygmund: Trigonometrical series, Warszawa (1935).

