418 [Vol. 31,

99. Groups of Isometries of Pseudo-Hermitian Spaces. II

By Shigeru ISHIHARA

Tokyo Metropolitan University

(Comm. by K. Kunugi, M.J.A., July 12, 1955)

In the previous paper [4] we have given Theorem 4, in which the assumption $n \neq 3$, n > 1 must be added. The notation and assumptions being as in the previous, we can state the following theorem including the case n=3.

THEOREM 4. Let G/H be a homogeneous pseudo-Hermitian space of dimension 2n and $\dim G = n^2 + 2n - 1$ (n > 1). If $n \neq 3$, G/H is flat and homeomorphic to E^{2n} and the group G is isomorphic to $S\mathfrak{M}_H(n)$. If n=3, G/H is flat or of positive constant curvature.

In case n=3 and G/H is flat, the conclusion is the same as in the general case. In case n=3 and G/H is of positive constant curvature, G/H is homeomorphic to a sphere S^6 of dimension 6 and the group G is isomorphic to a compact exceptional simple group of type (G).

PROOF. Since H is isomorphic to SU(n), there exists in the Lie algebra $\mathfrak g$ a subspace $\mathfrak m$ such that

$$g=m+h$$
 (direct sum as vector space), $\lceil h, m \rceil \subset m$,

where \mathfrak{h} is the subalgebra of \mathfrak{g} corresponding to the subgroup H and $[\mathfrak{h},\mathfrak{m}]$ denotes the subspace spanned by all elements of the form $[U,X],\ U\in\mathfrak{h},\ X\in\mathfrak{m}.$

First, we have easily

$$\lceil \mathfrak{h}, \lceil \mathfrak{m}, \mathfrak{m} \rceil \rceil \subset \lceil \mathfrak{m}, \mathfrak{m} \rceil,$$

where [m, m] denotes the subspace spanned by all elements of the form [X, Y], $X, Y \in m$. Since \mathfrak{h} is simple, one of the following four cases occurs:

$$[\mathfrak{m},\mathfrak{m}]=\{0\}, \quad [\mathfrak{m},\mathfrak{m}]=\mathfrak{m}, \quad [\mathfrak{m},\mathfrak{m}]=\mathfrak{h}, \quad [\mathfrak{m},\mathfrak{m}]=\mathfrak{g}.$$

The first three cases have been discussed in the previous paper. When the last case occurs, it is easily seen that \mathfrak{g} is simple and $\dim \mathfrak{g} = n^2 + 2n - 1$. Looking over the table of simple Lie algebras due to É. Cartan [2, p. 49], we see that, if there exists such a simple Lie algebra \mathfrak{g} , n must be 3 and \mathfrak{g} the exceptional simple Lie algebra \mathfrak{g}_{14} of type (G) which is of rank 2 and of dimension 14. Thus Theorem 4 is proved for $n \neq 3$.

To prove Theorem 4 for n=3, assume that g has the structure of the exceptional simple Lie algebra of type (G). It has been proved by É. Cartan [3, pp. 292-298] that there exist exactly two

real forms of simple Lie algebra g_{14} , one of them, say g_1 , is compact and the other, say g_2 , is non-compact.

We shall now prove $\mathfrak{g} \neq \mathfrak{g}_2$. It is sufficient to show that \mathfrak{g}_2 does not contain the Lie algebra of SU(3) as a subalgebra. For this purpose it is useful for us to recall a result of É. Cartan [3, pp. 292-298] that there is a linear group $G_2 \colon E^7 \to E^7$ leaving invariant a quadratic form Q of signature 3 and seven alternating bilinear forms where G_2 is a Lie group generated by \mathfrak{g}_2 . For brevity, we shall assume for G_2 to be connected.

Let $\mathfrak{L}(7)$ be the identity component of the group of all linear transformations on E^7 leaving the quadratic form Q invariant. It is evident that $\mathfrak{L}(7) \supset G_2$. It is not hard to see that the maximal compact subgroups of $\mathfrak{L}(7)$ are isomorphic to the product group $R(4) \times R(3)$, where R(4) and R(3) are the rotation groups of E^4 and E^3 respectively.

If we assume that $\mathfrak{g}=\mathfrak{g}_2$, then \mathfrak{h} is contained in \mathfrak{g}_2 and consequently \mathfrak{h} is contained in the Lie algebra of $\mathfrak{L}(7)$. \mathfrak{h} being a compact simple Lie algebra, we can assume without loss of generality $\mathfrak{h} \subset r(4) \times r(3)$, where r(4) and r(3) are the Lie algebras of R(4) and R(3) respectively. But this contradicts that \mathfrak{h} is simple and dim $\mathfrak{h}=8$. Thus we have $\mathfrak{g} \neq \mathfrak{g}_2$.

Next we shall consider the case $\mathfrak{g}=\mathfrak{g}_1$. É. Cartan [3, pp. 292–298] has showed that there is a linear group G_1 on E^7 leaving invariant a positive definite quadratic form and seven alternating bilinear forms where G_1 is a Lie group generated by \mathfrak{g}_1 . Moreover, it is well known that G_1 is the group of all automorphisms of the Cayley algebra [5, pp. 212–216]. By virtue of this fact, the unit sphere S^6 in E^7 is representable as a homogeneous space G_1/H_1 , where H_1 is isomorphic to SU(3), and the homogeneous space $S^6=G_1/H_1$ is of positive constant curvature as a homogeneous Riemannian space.

Since every Lie group having \mathfrak{g}_1 as its Lie algebra is simply connected $[6, \S 5]$, we can identify two groups G and G_1 . On the other hand two simple subgroups H and H_1 of $G=G_1$ have the same rank as G_1 and they are isomorphic to each other. From the table given by A. Borel $[1, \S 7]$, especially in this case, the following fact holds true: There exists in \mathfrak{g}_1 one and only one compact simple subalgebra \mathfrak{w} containing an arbitrary given maximal Abelian subalgebra of \mathfrak{g}_1 , if \mathfrak{w} is of rank 2 and of dimension 8. Then two subalgebras \mathfrak{h} and \mathfrak{h}_1 are conjugate to each other in \mathfrak{g}_1 , where \mathfrak{h}_1 is the subalgebra of \mathfrak{g}_1 corresponding to H_1 . Thus two subgroups H and H_1 are conjugate in $G=G_1$ to each other, because G_1 is simply connected and H and H_1 are connected. Consequently, the given

homogeneous space G/H can be identified with G_1/H_1 . This completes the proof of Theorem 4.

In Theorem 4, if H is not connected, G/H is homeomorphic to the real projective space of dimension 6 and has positive constant curvature $\lceil 7, \S 5 \rceil$.

At the last of the previous paper [4] the following proposition was given: If G/H is a homogeneous space of dimension 4n and H is isomorphic to Sp(n), then G/H is locally flat and homeomorphic to E^{4n} . In quite analogous manner to the proof of Theorem 4, we can see that there is no exceptional case in the above proposition.

Theorem 3 in the previous paper has to be corrected as follows.

THEOREM 3. Let G/H be a homogeneous pseudo-Hermitian space of dimension 2n and $\dim G = n^2 + 2n$. Then G/H is a homogeneous pseudo-Kählerian space with constant holomorphic sectional curvature K. When K>0 and G/H is simply connected, G is isomorphic locally to SU(n+1) and G/H is homeomorphic to P(C,n). When K<0, G is locally isomorphic to SQ(n+1) and G/H is homeomorphic to E^{4n} . When K=0, G is isomorphic to $M_H(2n)$ and G/H is homeomorphic to E^{4n} .

References

- A. Borel: Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comm. Math. Helv., 23, 200-221 (1949).
- [2] É. Cartan: Sur la structure des groupes de transformations finis et continus (1894).
- [3] É. Cartan: Les groupes réels simple, finis et continus, Ann. Éc. Norm., 31, 263-355 (1914).
- [4] S. Ishihara: Groups of isometries of pseudo-Hermitian spaces. I, Proc. Japan Acad., 30, 940-945 (1954).
- [5] P. Lardy: Sur la détermination des structures réelles de groupes simples, finis et continus, au moyen des isomorphies involutives, Comm. Math. Helv., 8, 189-284 (1935-36).
- [6] E. Stiefel: Über eine Beziehung zwischen geschlossenen Lie'schen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lie'schen Gruppen, Comm. Math. Helv., 14, 350-380 (1941-42).
- [7] H. C. Wang: Two-point homogeneous spaces, Ann. Math., 55, 177-191 (1952).