99. Groups of Isometries of Pseudo-Hermitian Spaces. II

By Shigeru Ishihara
Tokyo Metropolitan University
(Comm. by K. Kunugi, m.J.A., July 12, 1955)

In the previous paper [4] we have given Theorem 4, in which the assumption $n \neq 3, n>1$ must be added. The notation and assumptions being as in the previous, we can state the following theorem including the case $n=3$.

Theorem 4. Let G/H be a homogeneous pseudo-Hermitian space of dimension $2 n$ and $\operatorname{dim} G=n^{2}+2 n-1(n>1)$. If $n \neq 3, G / H$ is flat and homeomorphic to $E^{2 n}$ and the group G is isomorphic to $S M_{H}(n)$. If $n=3, G / H$ is flat or of positive constant curvature.

In case $n=3$ and G / H is flat, the conclusion is the same as in the general case. In case $n=3$ and G / H is of positive constant curvature, G / H is homeomorphic to a sphere S^{6} of dimension 6 and the group G is isomorphic to a compact exceptional simple group of type (G).

Proof. Since H is isomorphic to $S U(n)$, there exists. in the Lie algebra \mathfrak{g} a subspace \mathfrak{m} such that

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{m}+\mathfrak{h} \quad \text { (direct sum as vector space), } \\
& {[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m},}
\end{aligned}
$$

where \mathfrak{G} is the subalgebra of \mathfrak{g} corresponding to the subgroup H and $[\mathfrak{h}, m]$ denotes the subspace spanned by all elements of the form $[U, X], U \in \mathfrak{h}, X \in \mathfrak{m}$.

First, we have easily

$$
[\mathfrak{h},[\mathfrak{m}, \mathfrak{m}]] \subset[\mathfrak{m}, \mathfrak{m}],
$$

where $[\mathrm{m}, \mathrm{m}$] denotes the subspace spanned by all elements of the form $[X, Y], X, Y \in \mathfrak{m}$. Since \mathfrak{h} is simple, one of the following four cases occurs:

$$
[\mathfrak{m}, \mathfrak{m}]=\{0\}, \quad[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}, \quad[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}, \quad[\mathfrak{m}, \mathfrak{m}]=\mathfrak{g} .
$$

The first three cases have been discussed in the previous paper. When the last case occurs, it is easily seen that \mathfrak{g} is simple and $\operatorname{dim} g=n^{2}+2 n-1$. Looking over the table of simple Lie algebras due to É. Cartan [2, p. 49], we see that, if there exists such a simple Lie algebra \mathfrak{g}, n must be 3 and \mathfrak{g} the exceptional simple Lie algebra \mathfrak{g}_{14} of type (G) which is of rank 2 and of dimension 14. Thus Theorem 4 is proved for $n \neq 3$.

To prove Theorem 4 for $n=3$, assume that \mathfrak{g} has the structure of the exceptional simple Lie algebra of type (G). It has been proved by É. Cartan [3, pp. 292-298] that there exist exactly two
real forms of simple Lie algebra \mathfrak{g}_{14}, one of them, say \mathfrak{g}_{1}, is compact and the other, say g_{2}, is non-compact.

We shall now prove $\mathfrak{g} \neq g_{2}$. It is sufficient to show that g_{2} does not contain the Lie algebra of $S U(3)$ as a subalgebra. For this purpose it is useful for us to recall a result of É. Cartan [3, pp. 292-298] that there is a linear group $G_{2}: E^{7} \rightarrow E^{7}$ leaving invariant a quadratic form Q of signature 3 and seven alternating bilinear forms where G_{2} is a Lie group generated by \mathfrak{g}_{2}. For brevity, we shall assume for G_{2} to be connected.

Let $\mathcal{L}(7)$ be the identity component of the group of all linear transformations on E^{7} leaving the quadratic form Q invariant. It is evident that $\mathbb{R}(7) \supset G_{2}$. It is not hard to see that the maximal compact subgroups of $\mathfrak{R}(7)$ are isomorphic to the product group $R(4) \times R(3)$, where $R(4)$ and $R(3)$ are the rotation groups of E^{4} and E^{3} respectively.

If we assume that $\mathfrak{g}=\mathfrak{g}_{2}$, then \mathfrak{h} is contained in \mathfrak{g}_{2} and consequently \mathfrak{h} is contained in the Lie algebra of $\mathfrak{L}(7)$. \mathfrak{h} being a compact simple Lie algebra, we can assume without loss of generality $\mathfrak{h} \subset \mathfrak{r}(4) \times \mathfrak{r}(3)$, where $\mathfrak{r}(4)$ and $\mathfrak{r}(3)$ are the Lie algebras of $R(4)$ and $R(3)$ respectively. But this contradicts that \mathfrak{h} is simple and $\operatorname{dim} \mathfrak{h}=8$. Thus we have $\mathfrak{g} \neq \mathrm{g}_{2}$.

Next we shall consider the case $\mathfrak{g}=\mathfrak{g}_{1}$. É. Cartan [3, pp. 292298] has showed that there is a linear group G_{1} on E^{7} leaving invariant a positive definite quadratic form and seven alternating bilinear forms where G_{1} is a Lie group generated by \mathfrak{g}_{1}. Moreover, it is well known that G_{1} is the group of all automorphisms of the Cayley algebra [5, pp. 212-216]. By virtue of this fact, the unit sphere S^{6} in E^{7} is representable as a homogeneous space G_{1} / H_{1}, where H_{1} is isomorphic to $S U(3)$, and the homogeneous space $S^{6}=G_{1} / H_{1}$ is of positive constant curvature as a homogeneous Riemannian space.

Since every Lie group having g_{1} as its Lie algebra is simply connected $[6, \S 5]$, we can identify two groups G and G_{1}. On the other hand two simple subgroups H and H_{1} of $G=G_{1}$ have the same rank as G_{1} and they are isomorphic to each other. From the table given by A. Borel [1, §7], especially in this case, the following fact holds true: There exists in g_{1} one and only one compact simple subalgebra \mathfrak{w} containing an arbitrary given maximal Abelian subalgebra of \mathfrak{g}_{1}, if \mathfrak{w} is of rank 2 and of dimension 8. Then two subalgebras \mathfrak{h} and \mathfrak{G}_{1} are conjugate to each other in \mathfrak{g}_{1}, where \mathfrak{h}_{1} is the subalgebra of g_{1} corresponding to H_{1}. Thus two subgroups H and H_{1} are conjugate in $G=G_{1}$ to each other, because G_{1} is simply connected and H and H_{1} are connected. Consequently, the given
homogeneous space G / H can be identified with G_{1} / H_{1}. This completes the proof of Theorem 4.

In Theorem 4, if H is not connected, G / H is homeomorphic to the real projective space of dimension 6 and has positive constant curvature [7, §5].

At the last of the previous paper [4] the following proposition was given: If G / H is a homogeneous space of dimension $4 n$ and H is isomorphic to $S p(n)$, then G / H is locally flat and homeomorphic to $E^{4 n}$. In quite analogous manner to the proof of Theorem 4, we can see that there is no exceptional case in the above proposition.

Theorem 3 in the previous paper has to be corrected as follows.
Theorem 3. Let G/H be a homogeneous pseudo-Hermitian space of dimension $2 n$ and $\operatorname{dim} G=n^{2}+2 n$. Then G / H is a homogeneous pseudo-Kählerian space with constant holomorphic sectional curvature K. When $K>0$ and G / H is simply connected, G is isomorphic locally to $S U(n+1)$ and G / H is homeomorphic to $P(C, n)$. When $K<0, G$ is locally isomorphic to $S \mathbb{R}(n+1)$ and G / H is homeomorphic to $E^{4 n}$. When $K=0, G$ is isomorphic to $\mathfrak{M}_{H}(2 n)$ and G / H is homeomorphic to $E^{4 n}$.

References

[1] A. Borel: Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comm. Math. Helv., 23, 200-221 (1949).
[2] É. Cartan: Sur la structure des groupes de transformations finis et continus (1894).
[3] É. Cartan: Les groupes réels simple, finis et continus, Ann. Éc. Norm., 31, 263355 (1914).
[4] S. Ishihara: Groups of isometries of pseudo-Hermitian spaces. I, Proc. Japan Acad., 30, 940-945 (1954).
[5] P. Lardy: Sur la détermination des structures réelles de groupes simples, finis et continus, au moyen des isomorphies involutives, Comm. Math. Helv., 8, 189-284 (1935-36).
[6] E. Stiefel: Über eine Beziehung zwischen geschlossenen Lie'schen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lie'schen Gruppen, Comm. Math. Helv., 14, 350-380 (1941-42).
[7] H. C. Wang: Two-point homogeneous spaces, Ann. Math., 55, 177-191 (1952).

