120. Lacunary Fourier Series. II

By Masako Satô
Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. Suetuna, m.J.A., Oct. 12, 1955)

1. M. E. Noble [1] has proved the following

Theorem N. If the Fourier series of $f(t)$ has a gap $0<\left|n-n_{k}\right|$ $\leqq N_{k}$ such that

$$
\lim N_{k} / \log n_{k}=\infty
$$

and $f(t)$ satisfies a Lipschitz condition of order α, where $\frac{1}{2}<\alpha<1$, in some interval $\left|x-x_{0}\right| \leqq \delta$. Then

$$
\sum\left(\left|a_{n_{k}}\right|+\left|b_{n_{k}}\right|\right)<\infty,
$$

where $a_{n_{k}}, b_{n_{k}}$ are non-vanishing Fourier coefficients of $f(t)$.
As a continuation of the first paper [2] we treat absolute convergence of the Fourier series with a certain gap and satisfying some continuity condition at a point (Theorems 3 and 4).

We need following theorems and lemmas in [2].
Lemma 1. Let $\left(\delta_{m}\right)$ be a sequence tending to zero and let $n=\left[4 \mathrm{em} / \delta_{m}\right]$. Then there exists a trigonometrical polynomial $T_{n}(x)$ of degree not exceeding n with constant term 1 such that ${ }^{1)}$
(i) $\left|T_{n}(x)\right| \leqq A / \delta_{m}$, for all x,
(ii) $\quad\left|T_{n}(x)\right| \leqq A n / \delta_{m} e^{m}, \quad$ for $\delta_{m} \leqq|x| \leqq \pi$,
(iii) $\quad\left|T_{n}^{\prime}(x)\right| \leqq A n / \delta_{m}, \quad$ for all x,
(iv) $\quad\left|T_{n}^{\prime}(x)\right| \leqq A\left(n^{2} / \delta_{m} e^{m}+1 / x^{2}\right)$, for $\lambda \delta_{m} \leqq|x| \leqq \pi, \lambda>1,{ }^{2)}$
(v) $\quad\left|T_{n}^{\prime \prime}(x)\right| \leqq A n^{2} / \delta_{m}, \quad$ for all x,
where A denotes an absolute constant.
Theorem 1. Let $0<\alpha<1$ and $0<\beta<\min (1-\alpha,(2-\alpha) / 3)$. If $k^{2 /(2-\alpha-3 \beta)}<n_{k}<e^{2 k /(2+\alpha+\beta)}$, $\left|n_{k \pm 1}-n_{k}\right|>4 e k n_{k}^{\beta}$
and

$$
\begin{equation*}
1-h_{0}^{\beta}|f(t)-f(t \pm h)| d t=O\left(h^{\alpha}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\tau} \int_{0}^{\tau}|f(t)-f(t \pm h)| d t=O(1), \quad \text { unif. in } \tau \geqq h^{\beta}, \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\alpha_{n_{k}}=O\left(n_{k}^{-\alpha}\right), \quad b_{n_{k}}=O\left(n_{k}^{-\alpha}\right) . \tag{3}
\end{equation*}
$$

Lamma 2. Let $\left(\delta_{m}\right)$ be a sequence tending to zero and let $n=$ [4me $\left.{ }^{1-m \delta^{\prime} m / \delta_{m}} / \delta_{m}\right]$. Then there exists a trigonometrical polynomial

[^0]$T_{n}(x)$ of degree not exceeding n with constant term 1, satisfying the conditions (i), (iii), (v) in Lemma 1 and
(ii') $\quad\left|T_{n}(x)\right| \leqq A n / \delta_{m} e^{\left(1-m \delta^{\prime} m_{m} / \delta_{m}\right)(m-1)}, \delta_{m} \leqq|x| \leqq \pi$,
(iv') $\quad\left|T_{n}^{\prime}(x)\right| \leqq A\left(n^{2} / \delta_{m} e^{\left(1-m \delta^{\prime} m \delta_{m}\right)(m-1)}+1 / x^{2}\right), \quad \lambda \delta_{m} \leqq|x| \leqq \pi, \lambda>1$.
Theorem 2. Let $0<\alpha<1,0<\beta<(2-\alpha) / 3$, and
$$
\gamma>2 / \min (1-\beta, 2-\alpha-3 \beta)
$$
(or especially $0<\beta<(1-\alpha) / 2$ and $\gamma>2 /(1-\beta))$. If the Fourier coefficients of $f(t)$ vanish except for $n=\left[k^{r}\right](k=1,2,3, \ldots)$ and the conditions (1) and (2) of Theorem 1 are satisfied, then (3) holds.
2. Theorem 3. Let $1 / 2<a<\alpha<1,0<\beta<(2-\alpha) / 3$, and $\beta / 2<\alpha-a$ $\leqq(2-\alpha-\beta) / 4$. If
\[

$$
\begin{gathered}
k^{1 /(2 \alpha-2 \alpha-\beta)}<n_{k}<e^{2 k /(2+\alpha+\beta)} \\
\left|n_{k \pm 1}-n_{k}\right|>4 e k n_{k}^{\beta}
\end{gathered}
$$
\]

and

$$
\begin{align*}
& \frac{1}{h^{\beta}} \int_{0}^{h^{\beta}}|f(t)-f(t \pm h)|^{2} d t=O\left(h^{2 \alpha}\right) \quad \text { as } h \rightarrow 0, \tag{4}\\
& \frac{1}{\tau} \int_{0}^{\tau}|f(t)-f(t \pm h)|^{2} d t=O(1) \quad \text { unif. in } \tau>h^{\beta} \tag{5}
\end{align*}
$$

then
(6)

$$
\sum\left(\left|a_{n_{k}}\right|+\left|b_{n_{n_{k}}}\right|\right)<\infty,
$$

where $a_{n_{k}}, b_{n_{k}}$ are the non-vanishing Fourier coefficients of $f(t)$.
Proof. Let $\delta_{k}=1 / n_{k}^{\beta}$ and choose a sequence $M_{k}=\left[4 e k / \delta_{k}\right]$ and let $T_{M_{k}}(x)$ be the trigonometrical polynomial of Lemma 1. Let us put

$$
g_{k}(x)=f\left(x+\frac{\pi}{4 n_{k}}\right)-f\left(x-\frac{\pi}{4 n_{k}}\right)
$$

then

$$
g_{k}(x) \sim \sum_{0}^{\infty} 2 \sin \frac{n \pi}{4 n_{k}} \cdot\left(b_{n} \cos n x-a_{n} \sin n x\right)
$$

Then the nth Fourier coefficients α_{n}, β_{n} of $g_{k}(x) T_{m_{k}}(x)$ are given by

$$
\alpha_{n_{p}}=2 \sin \frac{n_{p} \pi}{4 n_{k}} b_{n_{p}}, \quad \beta_{n_{p}}=-2 \sin \frac{n_{p} \pi}{4 n_{k}} a_{n_{p}}, \quad\left(n_{k} \leqq n_{p} \leqq 2 n_{k}\right) .
$$

On the other hand, by Theorem 1 we have

$$
a_{n_{k}}=O\left(1 / n_{k}^{\alpha}\right), \quad b_{n_{k}}=O\left(1 / n_{k}^{\alpha}\right) .
$$

Since $\sum 1 / n_{k}^{2 \alpha}<\infty, f(x)$ belongs to the L^{2}-class. Thus we have

$$
\begin{aligned}
\frac{1}{2} \sum_{n_{k_{k}}}^{2 n_{k}}\left(a_{n}^{2}+b_{n}^{2}\right) & \leqq \sum_{n_{k}}^{2 n_{k}}\left(a_{n}^{2}+b_{n}^{2}\right) \sin ^{2} \begin{array}{c}
n \pi \\
4 n_{k}
\end{array} \\
& \leqq \frac{1}{4} \sum_{n_{k}}^{2 n_{k}}\left(\alpha_{n}^{2}+\beta_{n}^{2}\right) \leqq \begin{array}{c}
1 \\
4 \pi
\end{array} \int_{-\pi}^{\pi} g_{k}^{3}(x) T_{M_{k}}^{2}(x) d x \\
& =\frac{1}{4 \pi}\left[\int_{0}^{\pi}+\int_{-\pi}^{0}\right] g_{k}^{9}(x) T_{M_{k}}^{2}(x) d x=\frac{1}{4 \pi}\left[I_{1}+I_{2}\right] .
\end{aligned}
$$

By integration by parts

$$
\begin{aligned}
I_{1} & =\left[T_{M_{k}}^{2}(x) \int_{0}^{x} g_{\bar{k}}^{9}(t) d t\right]_{0}^{\pi}-2 \int_{0}^{\pi} T_{M_{k}}(x) T_{M_{k}}^{\prime}(x) d x \int_{0}^{x} g_{k}^{o}(t) d t \\
& =I_{11}-2 I_{12}
\end{aligned}
$$

where

$$
I_{11}=T_{M_{k}}^{0}(\pi) \int_{0}^{\pi} g_{k}^{3}(t) d t \leqq A\left(\begin{array}{c}
\left.\left.\frac{M_{k}}{\delta_{k} e^{\frac{a}{k}}}\right)^{2}=O\binom{1}{n_{k i}^{2 a}}\right) .
\end{array}\right.
$$

by Lemma 1 , (ii), and for $\lambda>1$

$$
\begin{aligned}
I_{12} & =\left[\int_{0}^{\lambda \delta_{k}}+\int_{\lambda \delta_{k}}^{\pi}\right] T_{M_{k}}(x) T_{M_{k}}^{\prime}(x) d x \int_{0}^{x} g_{k}^{2}(t) d t \\
& =I_{121}+I_{122}=O\left(1 / n_{k}^{2 a}\right) .
\end{aligned}
$$

For,

$$
\begin{aligned}
\left|I_{121}\right| & \leqq \frac{A M_{k}}{\delta_{k}^{2}} \int_{0}^{\lambda \delta_{k}} d x \int_{0}^{x} g_{k}^{2}(t) d t \\
& \leqq \frac{A M_{k}}{\delta_{k}} \int_{0}^{\lambda \delta_{k}} d x\left[\begin{array}{l}
1 \\
\delta_{k}
\end{array} \int_{0}^{\lambda \delta_{k}} g_{k i}^{2}(t) d t\right] \\
& \leqq A M_{k} / n_{k}^{2 \alpha} \leqq A / n_{k}^{2 a} .
\end{aligned}
$$

By Lemma 1, (i), (iii) and condition (4) and

$$
\begin{aligned}
\left|I_{122}\right| & \leqq \frac{A M_{k}}{\delta_{k} e^{k}} \int_{\lambda \delta_{k}}^{\pi}\left(\frac{M_{k}^{2}}{\delta_{k} \epsilon^{k}}+\frac{1}{x^{2}}\right) d x \int_{0}^{x} g_{k}^{\S}(t) d t \\
& \leqq \frac{A M_{k}^{3}}{\delta_{k}^{2} e^{2 k}} \int_{\lambda \delta_{k}}^{\pi} d x \int_{0}^{x} g_{k}^{2}(t) d t+\frac{A M_{k}}{\delta_{k} e^{k}} \int_{\lambda \delta_{k}}^{\pi} d x\left[\frac{1}{x} \int_{0}^{x} g_{k}^{3}(t) d t\right] \\
& \leqq \frac{A M_{k}^{3}}{\delta_{k}^{3} e^{2 k}}+\frac{A M_{k}}{\delta_{k} e^{k}} \log \frac{1}{\delta_{k}} \leqq \frac{A}{n_{k}^{3 a}}
\end{aligned}
$$

by Lemma 1 , (ii) and (iv).
Thus we have proved that

Consequently

$$
\sum_{n_{k}}^{2 n_{k}}\left(a_{n}^{2}+b_{n}^{2}\right)=O\left(n_{k}^{-2 a}\right)
$$

$$
\sum_{\mathrm{e}^{m}}^{2 m+1}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)=O\left(2^{\left(\frac{1}{2}+a\right)_{m}}\right)
$$

and then summing up both sides we get

$$
\sum\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty .
$$

Thus Theorem 3 is proved.
In a similar manner we can prove the following theorem, using Lemma 2 and Theorem 2.

Theorem 4. Let $1 / 2<\alpha<\alpha<1, \quad 0<\beta<(1-\alpha) / 2, \quad \gamma>1 /(2 \alpha-2 a$ $-\beta$), and $\beta / 2<\alpha-a<(1+\beta) / 4$.

If $n_{k}=\left[k^{r}\right] \quad(k=1,2,3, \ldots)$, and the conditions (4) and (5) are satisfied then (6) holds.

References

[1] M. E. Noble: Coefficient properties of Fourier series with a gap condition, Math. Annalen, 128, 55-62 (1954).
[2]
M. Satô: Lacunary Fourier series. I, Proc. Japan Acad., 31, 402-405 (1955).

[^0]: 1) A denotes an absolute constant which is not the same in different occurrences.
 2) λ may be taken as near 1 as we like when m is sufficiently large.
