4. On Images of an Open Interval under Closed Continuous Mappings

By Kiiti MORITA

Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

1. Introduction. A mapping of a topological space X onto another topological space Y is said to be closed if the image of every closed subset of X is closed in Y. As is well known, in order that a metric space Y be the image of the closed line interval [0,1] under a closed continuous mapping it is necessary and sufficient that Y be a locally connected continuum.

In the present note we shall establish the following theorem, which is an analogue of the celebrated theorem of Hahn-Mazurkiewicz mentioned above and may be considered as a generalization of it since any closed continuous mapping of the open line interval (0,1) onto a locally connected continuum can be extended over [0,1]by our Theorem 3 below.

Theorem 1. In order that a metric space Y be the image of the open line interval (0,1) under a closed continuous mapping it is necessary and sufficient that Y be a separable, locally compact, connected, locally connected space with at most two end-points in the sense of Freudenthal (i.e. $\gamma(Y) - Y$ consists of at most two points).

Here $\gamma(Y)$ means the Freudenthal compactification of the space Y (cf. [1], [2]).

For any positive integer m let Q_m be the union of m closed segments $a_i a_0$, $i=1, 2, \cdots, m$, each two having only one point a_0 in common, and let P_m be the space obtained from Q_m by removing the points a_i , $i=1, 2, \cdots, m$. Then P_1 and P_2 are homeomorphic to (0,1]and (0,1) respectively, and hence Theorem 1 is contained in the following theorem.

Theorem 2. In order that a metric space Y be the image of P_m under a closed continuous mapping it is necessary and sufficient that Y be a separable, locally compact, connected, locally connected space with at most m end-points in the sense of Freudenthal.

2. Lemmas. We shall first prove

Lemma 1. Let f be a closed continuous mapping of a metric space X onto another metric space Y. If A is a closed subset of Y whose boundary $\mathfrak{B}A$ is compact, then $\mathfrak{B}f^{-1}(A)$ is also compact.

Proof. Let us put

$$V_i = A \cup \{y \mid \rho(y, \mathfrak{B}A) < 1/i\},\$$

where ρ denotes a metric of Y (in case $\mathfrak{B}A = 0$ we put $V_i = A$). Then V_i is open and $\{V_i \mid i=1, 2, \cdots\}$ has the property that for any open set H containing A there exists some V_i with $V_i \subset H$; this is seen from the compactness of $\mathfrak{B}A$.

Suppose that $\mathfrak{B}f^{-1}(A)$ is not compact. Then there exist a countable number of points $x_i, i=1, 2, \cdots$, of $\mathfrak{B}f^{-1}(A)$ such that $\{x_i\}$ has no limit point. Then we can find a discrete collection $\{G_n\}$ of open sets of X such that

 $x_i \in G_i$ for $i=1, 2, \cdots$; $G_i \cap G_j=0$ for $i \neq j$

and $\{G_n\}$ is locally finite. Since each point x_i belongs to the boundary of $f^{-1}(A)$, there exists a point x'_i of X such that

$$x'_i \notin f^{-1}(A), \quad x'_i \in G_i \frown f^{-1}(V_i).$$

Then the set C consisting of all points x'_i , $i=1, 2, \cdots$ is closed, and hence if we put H=Y-f(C), H is an open set of Y. Since $x'_i \notin f^{-1}(A)$, we have $A \subset H$. Hence there exists some V_i such that $V_i \subset H$. This implies that $f(x'_i) \notin V_i$ for some *i*. On the other hand we have chosen the point x so that $x'_i \in f^{-1}(V_i)$. This is a contradiction. Thus Lemma 1 is proved.

Lemma 2. Let f be a closed continuous mapping of a metric space X onto another metric space Y. If X is separable or locally compact or locally connected, so also is Y.

This is proved for the first two properties by S. Hanai and the author [3], and for the last property by R. L. Wilder [5] and G. T. Whyburn [4].

Lemma 3. Let R be a metric space which is a locally connected continuum. Let p be not a locally separating point of R^{1} and let q be any point distinct from p. Then for any positive number ε there exists a finite ε -covering $\{K_1, \dots, K_m\}$ of R such that each K_i is a locally connected continuum and any two consecutive sets K_i , K_{i+1} have at least one common point and

 $p \in K_1$, $p \notin K_i$ for $i \ge 2$; $q \in K_m$.

Proof. By [5, Theorems III, 3.4, 3.6] there exists an ε -covering $\{L_1, \dots, L_s\}$ of R such that each L_i is a locally connected continuum and L_1 is the only set of the covering which contains p. Then there exists an open connected set V_0 such that \overline{V}_0 is locally connected and $p \in V_0$, $\overline{V}_0 \ L_i = 0$ for i > 1, by the same theorems quoted above; likewise there exists an open connected set G of diameter $<\varepsilon$ such that $L_1 \subset G$. Since G-p is connected and $L_1 - V_0$ is compact, there exist a finite number of locally connected continua C_1, \dots, C_k such

¹⁾ That is, G-p is connected for any open connected set G of R; for this it is sufficient that there exists a basis $\{W_a\}$ for neighborhoods of p such that W_a-p is connected for each a.

that $L_1 - V_0 \subset \bigcup_{i=1}^{k} C_i \subset G - p$. Since G - p is arcwise connected these continua are joined by arcs in G - p which, together with C_1, \dots, C_k , form a locally connected continuum K_2 (cf. [5, Theorem III, 3.15]). We arrange the sets $K_2, L_2, L_3, \dots, L_s$ (with repetitions) as a chain $\{K_2, K_3, \dots, K_m\}$ (K_i being some L_j or K_2) which begins with K_2 and ends with K_m containing q. If we put $K_1 = \overline{V_0}$, then $\{K_1, K_2, \dots, K_m\}$ has the desired properties.

Lemma 4. Under the same assumptions of Lemma 3, there exists a continuous mapping f of the closed interval [0,1] onto R such that f(0)=p, f(1)=q and $f(t) \neq p$ for t>0; the partial mapping $f_0=f|(0,1]$ is a closed continuous mapping of the semi-open interval (0,1] onto R-p.

Proof. Applying Lemma 3 repeatedly we can find a countable number of locally connected subcontinua

$$K(i_1, \dots, i_m), \quad i_1 = 1, \dots, s_1; \quad i_k = 1, \dots, s(i_1, \dots, i_{k-1}); \quad k = 2, \dots, m; \\ m = 1, 2, \dots$$

of R, where repetitions of the same set are allowed and $s_1 \ge 2$, $s(i_1, \dots, i_{n-1}) \ge 2$, with the following properties:

(1) $\Re_m = \{K(i_1, \dots, i_m) | i_1, \dots, i_m\}$ is a 2^{-m} -covering of R for each m.

(2) Let us define an order among the elements of \Re_m as follows: $K(i_1 \cdots, i_m) < K(j_1, \cdots, j_m)$ if $i_1 < j_1$, or $i_r = j_r$ for $r = 1, \cdots, n-1$ and $i_n < j_n$ for some n with $n \leq m$; then any two consecutive sets in this order have a point in common and the first element $K(1, \cdots, 1)$ is the only set of \Re_m containing p and the last element $K(s_1, s(s_1), \cdots, s(s_1, s(s_1), \cdots))$ contains q.

(3) $K(i_1, \dots, i_m) = \bigcup \{K(i_1, \dots, i_m, i_{m+1}) \mid i_{m+1} = 1, \dots, s(i_1, \dots, i_m)\}.$

Corresponding to this series of subdivisions of R we can construct a countable number of closed subintervals

$$T(i_1, \dots, i_m), \quad i_1 = 1, \dots, s_1; \quad i_k = 1, \dots, s(i_1, \dots, i_{k-1}); \quad k = 2, \dots, m;$$

 $m = 1, 2, \dots$

of [0,1] such that these intervals satisfy the conditions (1) to (3), with $K(i_1,\dots,i_m)$ replaced by $T(i_1,\dots,i_m)$ and with p, q replaced by 0,1 in [0,1] respectively, and an additional condition that two sets $T(i_1,\dots,i_m)$, $T(j_1,\dots,j_m)$ have only one common point or no common point according as they are consecutive sets or not.

For any real number t such that $0 \le t \le 1$, there exists a system (i_1, i_2, \cdots) such that $t \in T(i_1, \cdots, i_m)$ for $m = 1, 2, \cdots$. Then $\{K(i_1, i_2, \cdots, i_m) | m = 1, 2, \cdots\}$ consists of a single point which we will denote by f(t). The mapping f is easily seen to be a single-valued continuous mapping from [0,1] onto R satisfying the condition of Lemma 4.

3. The Freudenthal compactification. We recall the definition

of the Freudenthal compactification [1] by our method given in a previous paper [2].

Let R be a semicompact Hausdorff space (i.e. every point of R has arbitrarily small neighborhoods with compact boundaries). Let \mathfrak{M} be the totality of all finite open coverings $\{G_1, \dots, G_s\}$ of R such that $\mathfrak{B}G_i$ are compact. Then R is completely regular and \mathfrak{M} is a completely regular uniformity of R agreeing with the topology of R. Let S be the completion of R with respect to the uniformity \mathfrak{M} . Then S has the following properties:

(a) S is a compact Hausdorff space containing R as a dense subset.

(b) For any point p of S and for any neighborhood U of p there exists an open set V containing p such that $V \subset U$ and $\mathfrak{B}V \subset R$.

(c) For any two open sets G and H of R with compact boundaries, $(G \subset H)^* = G^* \subset H^*$ where we put $A^* = S - R - A$ for any open set A of R.

Conversely, the properties (a), (b) and (c) characterize S. This space S is denoted by $\gamma(R)$; we call $\gamma(R)$ the Freudenthal compactification of R. Each point of $\gamma(R)-R$ is called an end-point of R in the sense of Freudenthal.

Lemma 5. If G is an open connected subset of $\gamma(R)$ such that $\mathfrak{B}G \subset R$, then $G \subset R$ is an open connected subset of R.

Proof. Suppose that there exist two open subsets H_1 , H_2 of R such that $G \cap R = H_1 \cap H_2$, $H_1 \cap H_2 = 0$. Then the boundary of $G \cap R$ in the space R is compact and hence the boundary of H_i in the space R is likewise compact since $\overline{H_i} \cap R - H_i = \overline{H_i} \cap R - (H_1 \cap H_2) \subset (\overline{G} - G) \cap R$. Therefore we have from (c) $G \subset (G \cap R)^* = (H_1 \cap H_2)^* = H_1^* \cap H_2^*$, $H_1^* \cap H_2^* = (H_1 \cap H_2)^* = 0$. Since by the assumption G is connected we have $G \cap H_i^* = 0$ for some i and hence $H_i = G \cap H_i = (G \cap H_i^*) \cap R = 0$. This proves our lemma.

Theorem 3. Let f be a closed continuous mapping of a semicompact metric space X onto a semicompact metric space Y. Then fcan be extended to a continuous mapping of $\gamma(X)$ onto $\gamma(Y)$; in particular the number of end-points of X is not less than that of endpoints of Y.

Proof. Let $\{H_1, \dots, H_m\}$ be any finite open covering of Y such that $\mathfrak{B}H_i$ is compact for each *i*. Then there exists an open covering $\{K_1, \dots, K_m\}$ such that $\overline{K_i} \subset H_i$ and $\mathfrak{B}K_i$ is compact for each *i* (cf. [2, Lemma 1]). Since $\mathfrak{B}\overline{K_i} \subset \mathfrak{B}K_i$, by Lemma 1 we see that $\mathfrak{B}f^{-1}(\overline{K_i})$ is compact. Therefore if we put $G_i = \operatorname{Int} f^{-1}(\overline{K_i}), i = 1, 2, \dots, m, \{G_1, \dots, G_m\}$ is a finite open covering of X such that $f^{-1}(K_i) \subset G_i \subset f^{-1}(H_i)$ and $\mathfrak{B}G_i$ is compact for each *i*.

No. 1] On Images of an Open Interval under Closed Continuous Mappings

If we consider X and Y uniform spaces with the uniformities consisting of all finite open coverings by open sets with compact boundaries, the above consideration shows that f is a uniformly continuous mapping. Hence f can be extended to a continuous mapping of $\gamma(X)$ onto $\gamma(Y)$.

4. Proof of Theorem 2. The necessity assertion of Theorem 2 readily follows from Lemma 2 and Theorem 3 since the number of end-points of P_m is m.

Let Y be a separable, locally compact, connected, locally connected metric space (i.e. a locally connected generalized continuum) with m end-points in the sense of Freudenthal. Then $\gamma(Y)$ is a connected, compact metrizable space (cf. [1], [2]) and hence we shall treat $\gamma(Y)$ as a metric space. Furthermore $\gamma(Y)$ is locally connected since dim $(\gamma(Y)-Y) \leq 0$ (cf. [5]).

Since each end-point is not a locally separating point of $\gamma(Y)$ by Lemma 5, we can prove similarly as in the proof of Lemma 3 that there exists a finite covering $\{K_1, K'_1, K_2, K'_2, \cdots, K_m, K'_m, L_1, \cdots, L_n\}$ of $\gamma(Y)$ by locally connected continua, such that each K_i contains exactly one end-point, any set of the covering other than $K_i(i=1,\cdots,m)$ contains no end-point, and each K_i does not intersect any set of the covering other than $K_i(i=1,\cdots,m)$ of $K'_1,\cdots,K'_m, L_1,\cdots,L_n$, we have the covering $\{K_0, K_1,\cdots,K_m\}$ of $\gamma(Y)$ by locally connected continua such that each K_i for $i \ge 1$ contains exactly one end-point and K_0 contains no end-point, and $K_0 - K_i \neq 0$ for $i \ge 1$.

Let P_m and Q_m have the same meaning as in the introduction. We take a point y_0 in K_0 . Then for each *i* there exists, by Lemma 4, a closed continuous mapping g_i of $a_ia_0-a_i$ onto $(K_i \cup K_0) \cap Y$ such that $g_i(a_0)=y_0$. Let *f* be a mapping of P_m onto *Y* such that for each *i* the partial mapping $f | a_ia_0 - a_i$ coincides with g_i . Then *f* is clearly a closed continuous mapping of P_m onto *Y*.

For a positive integer n with n < m there exists obviously a closed continuous mapping of P_m onto P_n and likewise a closed continuous mapping of P_m onto the closed line interval [0,1]. Thus the sufficiency assertion of Theorem 3 is completely proved.

References

- [1] H. Freudenthal: Neuaufbau der Endentheorie, Ann. Math., 43, 261-279 (1942).
- [2] K. Morita: On bicompactifications of semibicompact spaces, Sci. Rep. Tokyo Bunrika Daigaku, Section A, 4, No. 94, 222–229 (1952).
- [3] K. Morita and S. Hanai: Closed mappings and metric spaces, Proc. Japan Acad.. 32, 10-14 (1956),
- [4] G. T. Whyburn: On quasi-compact mappings, Duke Math. Jour., 19, 445-446 (1952).
- [5] R. L. Wilder: Topology of Manifolds, Amer. Math. Coll. Publ., 32 (1949).