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1. Introduction. A mapping of a topological space X onto
another opological space Y is said to be closed if the image of every
closed subset of X is closed in Y. As is well known, in order that
a metric space Y be the image of the closed line interval [0,1] under
a closed continuous mapping it is necessary and sufficient that Y be
a locally connected continuum.

In he presen note we shall establish the following theorem,
which is an analogue of the celebrated theorem of Hahn-Mazurkie-
wicz mentioned above and may be considered as a generalization of
it since any closed continuous mapping of the open line interval
(0,1) onto a locally connected continuum can be extended over [0,1]
by our Theorem 3 below.

Theorem 1. In order tha a metric space Y be the image of the
open line interval (0,1)under a closed continuous mapping it is neces-
sary and sufficient that Y be a separable, locally compact, connected,
locally connected space with at most two end-points in the sense o]
Freudenthal (i.e. 7(Y)-Y consists of at most two points).

Here /(Y) means the Freutlenthal compactificaion of .he space
Y (ef. 1, [2).

For any positive integer m let Q be the union of m closed
segments aao, i--1, 2,..., m, each two having only one point ao in
common, and let P be the space obtaiaecl from Q by removing the
points a, i=l, 2,..., m. Then P and P are homeomorphic to (0,1]
and (0,1) respectively, and hence Theorem 1 is .contaiaed in the
following theorem.

Theorem 2. In order that a metric spce Y be the image of P
under a closed continuous mapping it is necessary and sufficient that
Y be a separable, locally compc$, connected, locally connected space
with at most m end-points in the sense of Freudenthal.

2. Lemmas. We shall first prove
Lemma 1. Leg f be a closed continuous mapping of a metric spce

X onto another metric space Y. If A is a closed subseg of Y whose
boundary A is compact, then f-(A) is also compact.

Proof. Let us put
V=A [Y P(Y, A)<l/i},
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where denotes a metric of Y (in case A-0 we put V,-A).
Then V, is open and IV,]i-l, 2,.-. has the property that for any
open set H containing A there exists some V, with V, H; this is
seen from the compactness of A.

Suppose t.hat f-(A) is not compact. Then there exist a count-
able number of points x,, i-l, 2,---, of f-(A) such tha Ix,} has
no limit point. Then we can find a discrete collection [G} of open
sets of X such that

xt G for i-l, 2,-.-; G-..G=O for i#j
and [G} is locally finite. Since each point x belongs to the boundary
of f-(A), there exists a point x of X such that

x f-(A), x’
Then the set C consisting of all points xl, i=1, 2,... is closed,

and hence if we put H--Y-f(C), H is an open set of Y. Since
x f-(A), we have A H. Hence there exists some V, such that
V, H. This implies that f(z) Vi for some i. On the other hand
we have chosen the poin, x so that xI e f-(V,). This is a contra-
diction. Thus Lemma 1 is proved.

Lemma 2. Let f be a closed continuous mapping of a metric
space X onto another metric space Y. If X is separable or locally
compact or locally connected, so also is Y.

This is proved for the first two properties by S. Hanai and the
author 3J, and for the last orooert.v bv R. L. Wilder [5_ and G.
T. Whyburn [4.

Lemma 3. Let R be a metric space which is a locally connected
continuum. Let p be not a locally separating point of R1 and let q
be any point distinct from p. Then for any positive number there
exists a finite e-covering [K,..., K} of R such that each K, is a
locally connected continuum and any two consecutive sets IV,, K +1 have
at least one common point and

pK, ptK, for i2; qK.
Proof. By [5, Theorems III, 3.4, 3.6] there exists an e-covering

L,’.., L} of R such that each L, is a locally connected continuum
and L is he only set of the covering which contains p. Then there

exists an open connected set Vo such that V0 is locally connected

and p e Vo, VoL-O for i>1, by the same theorems quoted above;
likewise there exists an open connected set G of diameter < e such
that LG. Since G-p is connected and L-V0 is compact, there
exist a finite number of locally connected continua C,..., C such

1) That is, G-p is connected for any open connected set G of R; for this it is
sufficient that there exists a basis W.} for neighborhoods of p such that W.-p is
connected for each ..
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k

ha L-VoCG-p. Since G-p is arcwise connected these
l=l

continua are joined by arcs in G-p which, together with C,..-, C,
form a locally connected continuum K (cf. [5, Theorem III, 3.15_).
We arrange he sets K, L., Ls,..-, .L (with repetitions) as a chain
[K, Ks,..., K} (K being some L or K) which begins with K and
eds wiC.h K, containing q. If we put K= V0, then [K, K.,..., K}
has the desired properties.

Lemma 4. Under the same assumptions of Lemma 3, there exists
a continuous mapping f of the closed interval [0,1 onto R such that
f(0)--p, f(1)=q and f(t) p for t)O; the partial mapping fo=fl (0,1
is a closed continuous mapping of the semi-open interval (0,1] onto
R-p.

Proof. Applying Lemma 3 repeatedly we can find a countable
number of locally connected subcontinua

K(i,. ., i), i=l,. ., s; i=l,. ., s(i,. ., i_); k-2, ., m;
m-- 1, 2,o

of R, where repetitions of the same set are allowed and s2,
s(i,..., i_) :> 2, with the following properties:

(1) ,---- [K(i,..., i)li,..., i,} is a 2--covering of R for
each m.

( 2 ) Let us define an order among the elements of 9 as follows:
K(i..., i)<K(3"," ",,j) if i<j, or i=j for r-l,..., n-1 and
i<j for some n with n m; then any two consecutive sets in this
order have a point in common and the first element K(1,.-., 1)is
the only set of 9 containing p and the last element K(s, s(s),...,
s(s, s(s), )) contains q.

( 3 ) K(i,..., i)= [K(i,,..., i, i+)li+= 1,..., s(i,..., i)}.
Corresponding o his series of subdivisions of R we can con-

struct a countable number of closed subintervals
T(i,. ., i), i=l,. ., s; i=l,. ., s(i,. ., i_); k-2,..., m;

of [0, l J such that these intervals sat.isfy the conditions (1) o (3),
with K(i,..., i) replaced by T(i,,..., i) and with p, q replaced by
0,1 in [0,1 respectively, and an additional condition hat two sets
T(i,,..., i), T(j,..., j) have only one common point or no common
point according as they are consecutive sets or not.

For any real number t such that 0t ==<_ 1, there exists a system
(i,, i:,. .) such that t e T(i,,..., i) ior m-l, 2,.... Then [K(i, i.,
.., i)Ira=l, 2,... consists of a single point which we will denote

by f(t). The mapping f is easily seen o be a single-valued continu-
ous mapping rom 0,1J onto R satisfying the condition of Lemma 4.

:. The Freudenthal compactification. We recall the definition
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Of the Freudenthal compactification 1_ by our method given in a
previous paper 2.

Let R be a semicompac Hausclorff space (i.e. every point of R
has arbitrarily small neighborhoods with compact boundaries). Let

be he toality of all finiCe open coverings G,’", G} of R such
tha G, are compact. Then R is completely regular and t is a
completely regular uniformity of R agreeing with the opology of R.
Let S be the completion of R with respect to t.he uniformity .
Then S has t.he following properies:

(a) S is a compact Hausdorff space containing R as a dense
subset.

b ) For any point p of S and for any neighborhood U of p there
exists an open et V containing p such that VU and VR.

c For any Cwo open sees G and H of R with comlac bound-
aries, (G H)*--G* H* where we lut A* -S-R-A for any open
set A of R.

Conversely, Che prolerties (a), (b) and (c) characterize S. This
space S is denoC.ed by /(R); we call /(R) the Freudentha] compacti-
ficaio of R. Each point of /(R)-R is called an end-point of R in
the sense of Freudenthal.

Lemma 5. If G is an open connected subset of 7(R) such that
GR, then GR s an open connected subset of R.

Proof. Suppose that here exist two open subsets H, Ho of R
such that G R-H’- Ho, Ht H 0. Then .he boundary of G ,-R
in the space R is compact and hence the boundary of H. in the space R
is likewise compact since H R-H-HR-(H H) (G- G) R.
Therefore we have irom (c) G(G-,R)*-(HH.)*-H*H?,
H*H*-(HH)*=O. Since by the assumption G is connected
we have GH:=0 or some i a.d hence H-GH-(GH:)R=O.
This proves our lemma.

Theorem 3. Let f be a closed continuous mapping of a semi-
compact metric space X onto a semicompact metric space Y. Then f
can be extended to a continuous mapping of 7(X) onto 7(Y); in partic-
ular the number of end-points of X is not less than that of end-
points of Y.

Proof. Let [H,..., H} be any finite open covering of Y such
that H is compac for each i. Then here exists an open covering

[K.-., K} such that KH and K is compact for each i (cf.
[2, Lemma 1]). Since KK, by Lemma 1 we see that f-(K)
is compact. Therefore if we put G=Int f-t(K), i=1,2,...,m,
[G,..., G} is a finite open covering of X such that f-(K)G
f-t(H) and G, is compact for each i.
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If we consider X and Y uniform spaces wih he uniformities
consisting of all finite open coverings by open sets with compact
boundaries, t.he above consideration shows that f is a uniformly con-
inuous mapping. Hence f can be extended to a continuous mapping
of (X) onto 7(Y).

4. Proof of Theorem 2. The necessity assertion of Theorem
2 readily follows from Lemma 2 and Theorem 3 since the number
of end-points of P is m.

Let Y be a separable, locally compact, connected, locally con-
nected metric space (i.e. a locally connected generalizecl continuum)
with m end-points in ,he sense of Freudenthal. Then /(Y) is a
connected, compact metrizable space (cf. [1], 2) and hence we
shall treat /(Y) as a metric space. Furthermore 7(Y) is locally con-
nected since dim (/(Y)- Y) 0 (cf. _5).

Since each end-poin is not a locally separating point of /(Y)
by Lemma 5, we can prove similarly as in the proof of Lemma 3 tha
here exists a finite covering [K, K’, K,2, K;,. ., K, K.’,, L,. ., L} of
/(Y) by locally connected continua, such that each K, contains exactly
one end-point, any set of ,he covering other than K(i=I,-.-, m)
contains no end-point, and each K, does not intersect any set of the
covering other than K: (i=1,-.., m). If we denote by Ko the union
of K’,. ., K;,,, L,..., L, we have the covering [Ko, K,..., K} of
/(Y) by locally connected continua such ,ha each K, for i 1 con-
tains exactly one end-point and K0 contains no end-point, and KoK,0
for i__>1.

Let P and Q have the same meaning as in the introduction.
We take a poin, Yo in K0. Then for each i there exists, by Lemma
4, a closed continuous mapping g, of a,,ao-a, onto (K,Ko) Y such
that g,(ao)=Yo. Let f be a mapping of P onto Y such tha, for each
i the partial mapping f a,ao-a, coincides with g.,. Then f is clearly

a closed continuous mapping of P onto Y.
For a positive integer n with n<m there exists obviously a

closed con,inuous mapping of P onto P and likewise a closed con-
tinuous mapping of P onto the closed line interval [0,1. Thus the
sufficiency assertion of Theorem 3 is completely proved.
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