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1. Introduction. A mapping of a topological space X onto
another topological space Y is said to be closed if the image of every
closed subset of X is closed in Y. Asis well known, in order that
a metric space Y be the image of the closed line interval [0,1] under
a closed continuous mapping it is necessary and sufficient that Y be
a locally connected continuum.

In the present note we shall establish the following theorem,
which is an analogue of the celebrated theorem of Hahn-Mazurkie-
wicz mentioned above and may be considered as a generalization of
it since any closed continucus mapping of the open line interval
(0,1) onto a locally connected continuum can be extended over [0,1]
by our Theorem 3 below.

Theorem 1. In order that a metric space Y be the tmage of the
open line interval (0,1) under a closed continuous mapping it s neces-
sary and sufficient that Y be a separable, locally compuct, connected,
locally connected space with at most two end-points in the sense of
Freudenthal (v.e. v(Y)—Y consists of at most two points).

Here ¥(Y) means the Freudenthal compactification of the space
Y (ef. [1], [2D.

For any positive integer m let @, be the union of m closed
segments a,a,, t=1,2,---, m, each two having only one point «, in
common, and let P,, be the space obtained from @,, by removing the
points a,, 9=1,2,---,m. Then P, and P, are homeomorphic to (0,1]
and (0,1) respectively, and hence Theorem 1 is .contained in the
following theorem.

Theorem 2. In order that a metric space Y be the tmage of P,
under o closed continuous mapping it is necessary and sufficient that
Y be a separable, locally compact, connected, locally connected space
with at most m end-points in the sense of Freudenthal.

2. Lemmas. We ghall first prove

Lemma 1. Let f be a closed continuous mapping of o metric space
X onto another metric space Y. If A is a closed subset of Y whose
boundary BA is compact, then Bf'(A) is also compact.

Proof. Let us put
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where p denotes a metric of Y (in case BA=0 we put V,=A).
Then V, is open and {V;|4=1,2,---} has the property that for any
open set H containing A there exists some V, with V,C H; this is
seen from the compactness of BA.

Suppose that Bf~'(A) is not compact. Then there exist a count-
able number of points x;, =1, 2,---, of Bf(A) such that {x,} has
no limit point. Then we can find a discrete collection {G,} of open
sets of X such that

z,eG, for ¢=1,2,--+; G, ~G;=0 for 137
and {G,} is locally finite. Since each point «; belongs to the boundary
of f~'(A), there exists a point z; of X such that
xi ¢ [ (A), xieG~f (V).

Then the set C consisting of all points z], ¢=1, 2,--- is closed,
and hence if we put H=Y-—f(C), H is an open set of Y. Since
x; ¢ f7'(4), we have AC H. Hence there exists some V, such that
Vi, H. This implies that f(x;) ¢V, for some 7. On the other hand
we have chosen the point # so that «;e f-'(V,). This is a contra-
diction. Thus Lemma 1 is proved.

Lemma 2. Let f be a closed continuous mapping of o metric
space X onto another metric space Y. If X is separable or locally
compuct or locally connected, so also is Y.

This is proved for the first two properties by S. Hanai and the
author [3], and for the last proverty by R. L. Wilder [5] and G.
T. Whyburn [4].

Lemma 3. Let R be a metric space which is a locally connected
continuum. Let p be not a locally separating point of RY and let ¢
be any point distinct from p. Then for any positive number € there
exists a finite e-covering (K, ---, K,} of R such that each K, is a
locally connected continuum and any two consecutive sets K,, K., have
at least one common point and

e K, p¢ K, for 1=2; qge K,.

Proof. By [5, Theorems III, 8.4, 8.6] there exists an e-covering
{Ly,- -+, L} of R such that each L, is a locally connected continuum
and L, is the only set of the covering which contains p. Then there
exists an open connected set V, such that V, is locally connected
and pe V,, T_fo,\Lt=O for ¢>1, by the same theorems quoted above;
likewise there exists an open connected set G of diameter <e such
that L, G. Since G—p is connected and L,—V, is compact, there
exist a finite number of locally connected continua C,,---, C, such

1) That is, G—p is connected for any open connected set G of R; for this it is
sufficient that there exists a basis {W,} for neighborhoods of p such that W,—p is
connected for each .
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k
that L,— VOC;JCiCG-p. Since G—p is arcwise connected these
=1

continua are joined by arcs in G —p which, together with C,,-- -, C,,
form a locally connected continuum K, (cf. [5, Theorem III, 8.15]).
We arrange the sets K, L,, L,,---, L, (with repetitions) as a chain
{Ky K- -+, K.} (K, being some L; or K,) which begins with K, and
ends with K,, containing ¢q. If we put K,=V,, then {K, K, - -, K.}
has the desired properties.

Lemma 4. Under the same assumptions of Lemma 3, there exists
a continuous mapping f of the closed interval [0,1] onto R such that
FO)=p, fQ)=q and f(t) = p for t>0; the partial mapping f,=51(0,1]
4s a closed continuous mapping of the semi-open interval (0,1] onto
R—np.

Proof. Applying Lemma 8 repeatedly we can find a countable
number of locally connected subcontinua

K(il’ Tt im): ’£1=1, cety Sy 7’Ic:1’ ) 8(’51,' t /ik—l); k=27 cre, My
m:]_’ 2’ e

of R, where repetitions of the same set are allowed and s;=2,
8(2y,+ + +y ty_y) =2, with the following properties:

(1) K,={K@;,-**, )|ty %} is a 2™™-covering of R for
each m.

(2) Let us define an order among the elements of &, as follows:
K@y oy t)<K(dsy+++y Gm) if 4,<g,, or i,=j, for r=1,---,n—1 and
1,<Jn for some n with n <m; then any two consecutive sets in this
order have a point in common and the first element K(1,---,1) is
the only set of &, containing p and the last element K(s,, s(s),: - -,
s(8y, 8(81),- - +)) contains q.

( 3) K(,l:l" S} ’l’m)zv {K(@h ) im’ im-bl) I /im+1:1:’ ) 3(7:1" ) 'Lm)} .

Corresponding to this series of subdivisions of B we can con-
struct a countable number of clogsed subintervals

T@la' ) zm): il':l" ©*y Sy 'l'la:l: ) 3(7:1" M) /’:lc—-l); k:27 cey My
m=1,2,---

of [0,1] such that these intervals satisfy the conditions (1) to (8),
with K(¢,,---,1,) replaced by T(,- -, 1, and with p, g replaced by
0,1 in [0,1] respectively, and an additional condition that two sets
T(ty- -y 1)y, T+, Jn) have only one common point or no common
point according as they are consecutive sets or not.

For any real number ¢ such that 0 <t <1, there exists a system
(%4, s, - - -) such that ¢eT(z,,- -+, 4,) for m=1,2,--- . Then ~ {K(,, %,
eyt Im=1, 2,---} consists of a single point which we will denote
by £(t). The mapping f is easily seen to be a single-valued continu-
ous mapping from [0,1] onto R satisfying the condition of Lemma 4.

3. The Freudenthal compactification. We recall the definition
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of the Freudenthal compactification [1] by our method given in a
previous paper [2].

Let R be a semicompact Hausdorff space (i.e. every point of R
has arbitrarily small neighborhoods with compact boundaries). Let
M be the totality of all finite open coverings {G,,---, G,} of R such
that BG, are compact. Then R is completely regular and M is a
completely regular uniformity of R agreeing with the topology of E.
Let S be the completion of B with respect to the uniformity .
Then S has the following properties:

(a) S is a compact Hausdorff space containing R as a dense
subset.

(b) For any point p of S and for any neighborhood U of p there
exists an open set V containing p such that V' U and BV CR.

(¢) For any two open sets G and H of R with compact bound-
aries, (G~ H)*=G*~ H* where we put A*=S—R— A for any open
set A of R.

Conversely, the properties (a), (b) and (¢) characterize S. This
space S is denoted by v(R); we call yv(R) the Freudenthal compacti-
fication of R. Each point of y(R)—R is called an end-point of R in
the sense of Freudenthal.

Lemma 5. If G s an open connected subset of y(R) such that
BGC R, then G ~R is an open connected subset of R.

Proof. Suppose that there exist two open subsets H,, H, of R
such that G ~R=H,~ H,, H ~H,=0. Then the boundary of G ~R
in the space R is compact and hence the boundary of H, in the space R
is likewise compact since H, ~R— H,=H, ~R—(H,~ H))C(G—G) ~R.
Therefore we have from (¢) GC(GA~R)*=(H,~ Hy*=H~" H;,
H* ~H}=(H,~ H,)*=0. Since by the assumption G is connected
we have G ~ H*=0 for some % and hence H;=G ~H,=(G~H)~R=0.
This proves our lemma.

Theorem 3. Let f be a closed continuous mapping of a semi-
compact metric space X onto a semicompact metric space Y. Then f
can be extended to a continuous mapping of v(X) onto y(Y); in partic-
ular the number of end-points of X ts mot less than that of end-
points of Y.

Proof. Let {H,---, H,} be any finite open covering of Y such
that BH,; is compact for each ¢. Then there exists an open covering

(K-, K,,} such that K, H, and 8K, is compact for each ¢ (cf.
[2, Lemma 1]). Since BK, —BK,, by Lemma 1 we see that Bf (k)
is compact. Therefore if we put G,=Int f-Y(K,), i=1,2, -, m,

{Gy,- -+, Gy} is a finite open covering of X such that f~(K)CG.C
F'(H,) and BG, is compact for each .
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If we consider X and Y uniform spaces with the uniformities
consisting of all finite open coverings by open sets with compact
boundaries, the above consideration shows that f is a uniformly con-
tinuous mapping. Hence f can be extended to a continuous mapping
of y(X) onto v(Y).

4. Proof of Theorem 2. The necessity assertion of Theorem
2 readily follows from Lemma 2 and Theorem 3 since the number
of end-points of P,, is m.

Let Y be a separable, locally compact, connected, locally con-
nected metric space (i.e. a locally connected generalized continuum)
with m end-points in the sense of Freudenthal. Then (YY) is a
connected, compact metrizable space (cf. [1], [2]) and hence we
shall treat v(Y) as a metric space. Furthermore (YY) is locally con-
nected since dim (v(Y)—Y)=<0 (ef. [5)).

Since each end-point is not a locally separating point of ¥(Y)
by Lemma 5, we can prove similarly as in the proof of Lemma 3 that
there exists a finite covering (K., K|, K,, K}, - -, K,,, K}, L;,- -+, L,} of
¥(Y) by locally connected continua, such that each K, contains exactly
one end-point, any set of the covering other than K(i=1,---,m)
contains no end-point, and each K, does not intersect any set of the
covering other than K/ (¢i=1,---,m). If we denote by K, the union
of K{,---, K., L,+-+,L,, we have the covering {K, K, -+, K,,} of
v(Y) by locally connected continua such that each K, for ¢=1 con-
tains exactly one end-point and K, contains no end-point, and K,~K,=0
for 1>=1.

Let P,, and Q, have the same meaning as in the introduction.
We take a point ¥, in K,. Then for each ¢ there exists, by Lemma
4, a closed continuous mapping g; of a,a,—a; onto (K;~ K;) ~Y such
that g.(¢)=¥%,. Let f be a mapping of P, onto Y such that for each
4+ the partial mapping f|a,a,—a; coincides with g;. Then f is clearly
a closed continuous mapping of P,, onto Y.

For a positive integer n» with n<m there exists obviously a
closed continuous mapping of P,, onto P, and likewise a closed con-
tinuous mapping of P,, onto the closed line interval [0,1]. Thus the
sufficiency assertion of Theorem 8 is completely proved.
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