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27. On the Property of Lebesgue in Uniform Spaces. VI

By Kiyoshi ISEKI
Kobe University
(Comm. by K. KuNuUGI, M.J.A., Feb. 13, 1956)

Let S be a topological space. A covering of S is a family of
open sets whose union is S. A covering is called finite, if it con-
gists of a finite family.

Let us consider a separated uniform space S with a filter of
surroundings S. A covering & of S is said to have the Lebesgue
property if there is a surrounding V in & such that, for each point
z of S, we can find an open set 0 of & satisfying V(x)O0.

We say that a separated uniform space has the finite Lebesgue
property if any finite covering has the Lebesgue property. If any
covering of S has the Lebesgue property, the space S is said to
have the Lebesgue property. Such a space was studied by K. Iséki
[4] and S. Kasahara [5]. 8. Kasahara ([5], p. 129) has proved that
every uniform space having the Lebesgue property s complete. On
the other hand, the present author ([4], V, p. 619) has shown that
the finite Lebesgue property does not imply the Lebesgue property
and the existence of a non-complete uniform space having the finite
Lebesgue property.

In this Note, we shall prove the following

Theorem 1. If the completion of a uniform space having finite
Lebesgue property is mormal, it has the finite Lebesgue property.

As eagily seen, the converse of Theorem 1 is not true. There
are non-normal complete uniform spaces (J. Dieudonné [2]).

To prove this suppose that S is the completion of a uniform
space S having the finite Lebesgue property. According to a theorem
of my Note ([4], IV, p. 524), it is sufficient to prove the following
proposition.

Every bounded continuous function on S is uniformly continuous.

Let f(x) be a continuous function on §, then the restricted
funetion f(x|S) on S is uniformly continuous. Therefore, f(x|S) is

uniform continuously extended on S and it coincides with f(x). Thus

S(x) is uniformly continuous, and S has the finite Lebesgue property.
Under the assumption of Theorem 1, we shall consider the rela-

tion between the dimension of S and its completion S. There are
some definitions of dimension for a topological space. However,
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E. Hemmingsen [ 8] proved that some of these definitions are equivalent
for normal space. Therefore, we shall use Lebesgue’s covering defi-
nition by open sets. The order of a covering § is the maximum
number » such that there are n-+1 sets of #F with non-empty inter-
section. A covering %, is called a refinement of a covering %, if to
each member U of &, there is a member V of %, such that UCV.
By the dimension (by Lebesgue) of a space S, we shall mean the
minimum number % such that, for any finite covering & of S, there
is a finite covering & of order » and &’ is a refinement of F. By
dim S, we shall denote the dimension of S.
We turn now to prove the following

Theorem 2. If the completion S of a uniform space S having

the finite Lebesgue property is normal, then dim S=dim S.
To prove Theorem 2, we shall show
Lemma. Any uniform space S having the finite Lebesgue prop-

erty is combinatorially imbedded in the completion S in the strong
sense.

The notion stated in the conclusion is due to E. Cech and J.
Novak [1].

Proof. By a theorem of my Note ([4], III), S is normal, there-
fore, regular. Let F,, F, be closed sets in S. Then we prove

F, ~F,=F,~F, where the closure takes in S, and this shows that

S is combinatorially imbedded in S in the strong sense. It is clear

that F,~F,cF,~F, LetxecF,F.,—F,~F, then, by the regularity
of S, we can take a neighbourhood G of z in S such that G~F,~F,=0.

Let G,=G~F,, G,=G~F,, then z ¢ G;~G, and G, and G, are disjoint
and closed in S. By the normality of S, there is a bounded continuous
function f on S such that fis0 on G, and f is 1 on G.. By the
assumption of S, f is uniformly continuous and therefore f is con-

tinuously extended on S. This implies G,~G,=0, which contradicts
G,~G.> .

To prove Theorem 2, we shall prove the following theorem which
is a generalisation of Theorem 2.

Theorem 3. Let S, S, be normal spaces. If S,=S, and S, is
combinatorially imbedded in S, in the strong sense, then dim S;=dim
S..

A special case of Theorem 3 has been proved by M. Katétov
[6]. We shall prove Theorem 3 by using a similar method.
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Proof. Let dim S,<%, and ¥={G,, ---, G,} a finite covering of
S;. & is shrinkable, by the normality of S, Let a covering

& =1{Hy,---, H,} of S, such that H,cG,(i=1,2,---,m), and 0,=

S,—S,— H,, then, since S, is combinatorially imbedded in S, in the

strong sense, Goizsz. Hence the covering {0,} has a refinement
i1

&= {U;} of order <n. The covering {U,~S,} of S, is a refinement
of % and order <m.

Next suppose dim S,<n. Let F={G,---,G.} be a covering of
S,. By the normality of S,, & is shrinkable, and let &= {H,] be a

covering of S, such that H,cG, (¢=1,2,---,m). Then we can find
a covering &= {0,} of &, of order <%, and to each 0,, there is an

open set H; such that 0,CH, Let U,=S,—S,—0,, then we have
¢91m282-zO1S1—OiZS2’

by our assumption. For some j, (10;,=0 implies (U,=0, and this
shows that the order of the covering {0,} is not greater than n. If

0,CH;, then U,CH,CG,, and the covering {U,} of S, is a refinement
of %¥. This completes the proof.
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