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6. Furthermore we can improve Theorem 6, in he following
form:

Theorem 7. If
( 1 ) (f(+ )-f(x))d-o(lhl), 0

for a xed x, and

uniformly for all t, then the Fourier series of f(t) converges at x.
In other words the condition in Theorem 6

’l’f(x + u)-f(x)Idu- o(lhl)

is replaced by (1).
Proof. We put

1

/

z+ +o(.

Then by integration by
/" n eos nt t

and hence, on aeeoun of (), the absolute value of I is no reter
han

dt dty
where ()- ()d-o(t) as (0/).

In order o evaluate we now u (el.

/

where

r.= j oo(t +(->/n)
t +,/n-

j=

_
j

(t+ 2kr/n)-(t+ (2k- 1)r/n) sin nt dr,
t + 2kr/n

1
t +(2k-1)r/n

sin nt dt,
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:hen

and further we divide J into two parts as follows:

j o(+ k-/n)-p(+ (.k- 1)-/) sin d
; 2kr/n

f/ o(t+ 2kr/n)-cp(t + (2k- 1)r/n) t sin nt dt1(t + 2kr/n). 2kr/n
=Jn-J..

We write

jl= n
: -2}-- [f(x + t + 2kr/n) f(x + t + (2k- 1)r/n) j sin nt dt

+ f(x-t-2kr/n)-f(x-t-(2t-l)r/n) sin nt dt1
n

-2- [ J Zr" J

Jh= f(x+ 2kr/n + t)-f(x+ (2k- 1)r/n + t) sin nt dt

+J [f(x + 2kr/n + (r/n- t))-f(x+ (2k- 1)r/n + (r/n- t)) sin nt dt

J [f(x + 2kr/n + t)-f(x+ 2kr/n- t) sin nt dt

J f(x+ (2/c-- 1)/n+ t)--f(x + (2k + 1)r/n- t) sin nt dt

p12n ["win

=J [f($+t)-f($-t) sinntdt-J
/2rt

p /2n

=2J [f(+t)- f($-t)] sin nt dt-J [f($+t)-f(-t) sin nt dt,

where =x+ 2kr/n, r-t--/n. By in:eg’raion by parts and (2)

gtf u) f( du-nj cosnt (,f(+ -u))

--o(l/n logn)+o n dt -o(l/n log n)
log" 1/t

and similarly

+ t)-f($-t)) sin nt dt-o(1/n log n).

Hence we have
o->/ n__- 2-krr Jl= N --o n log n log-;- = -k-)--o(1),

(n--l)/2

and quite similarly , ---Jl-O(1), thus we get Jn-o(1).
/=1 2kr
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On the other hand we pu
n [f/ f(x + t + 2kr/n)-f(x + t + (2k- 1)rr/n) t sin nt dt-2k-r t + 2kr/n

+f/ f(x-t- 2k/n)-f(x-t + 2k/nt-(2k 1)/n) t sin nt dt

then by integration by parts and (2), we have-- J F(t) (2kr/n) sin nt + nt cos nt + 2krt cos nt dt
(t + 2krr/n)

and hence
(-/ /n 3 f/o[ 1 =-(nt+ 4tk) dt(,/2=-2Cr-n Jl- = ,

k ) J n log n/

=o -o(1),,nlogn=l- -n+--t -o -lo--n- -k
where F(t)=fif(x + u + 2krr/n) f(x + u + (2k- 1)rr/n) du- o(1/n log n)

uniformly for x and k as n (Ot-/n). In :he same way we
(n

get : n J-o(1), hus we have J-o(1).
=1 2krr
Finally we shall prove J2=o(1). By Abel’s lemma

(cp(t + (2k- 1)rr/n) o(t + (2k- 3)r/n)) sin nt dt

+ -- = t + 2j/n t + (2j- 1)/n
(t+ /n) sin nt dt

--J+J,
say. Then by integration by

Jo =
n

( n cos nt sin nt (2t + (4- 1)/n) dt- (t + 2j/n) (t + (2j 1)/n) (t ’ -in)]
whence

= na = nlog

by condition (2). urhermore, we have also by ineffraion by
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( n cos nt sin nt (2t + (4j- 1)r/n) dt= (t + 2jr/n) (t + (2j- 1)r/n) (t
and applying condition (1)

IJ.d <: A1-- _, f(x + u+ r/n)-f(x) du
n’:::ao

+ [f(x u ./n) f(x)guldt

An’J J +f%f +f l<f<x +u> f(x>> u
/n

=o(),
where A is an absolute constant. Thus the theorem is proved.

7. We can prove he following theorems analogously as
Theorems 3, 4 and 5.

Theorem 8. Let O< a< l. If
( 1 ) (f(x + u)-,f(x)) du- o(lhl), as h-. O,

for a fixed x, and

if" --)), a -o

niformly for all , and frther th Fourier eoeJfieiet of f(t) are
of order O(eV</), then the Fourier erie of f(t) eovere at .

Theorem 9. Le 1. If (1)hold and

(//(-h- (f(t + u) f(t- u)) du- o og og

uniformly for all t and the nth Fourier coelcients of f(t) are of
order O(dgg.=/n), then the Fourier series of f(t) converges at x.

If a=l, then the conclusion holds when O(dg:/n) in the last
condition is replaced by 0 ((log n)r/n) (7 > 0).

Theorem 10. If (1) holds and

h
(f(t + u)-f(t- u)) du= o as h--> 0

uniformly for all t and if f(t) is of class (n) then the Fourier
series of f(t) converges at x, where (n)-O(n), (n)-log (nO(n)/(n))
and O(n) are monotone increasing to infinity as n o.

8. R. Salem [1 proved the following theorem cncerning the
partial sum of Fourier series.

Theorem 11. If f(x)eL and

(f(t + u)-f(e-u))du-O og- as(1)

uniformly for all t, then
( 2 ls,,(x)[<g(x) (n--I, 2,...
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where g(x)eL (0<if<l).
Further ] ,f(x)L" (r 1) and (1) holds then (2) is true for g(x)L,

and if f(x) log+lf(x)leL and (1) holds, then (2) is true for g(x)eL.
From the proof o R. Salem, we can see that

Is(x)lA max If(t) ld + 0(1),

from which the above theorem is deduced by the maximal theorem [6.
We shall prove the ollowing sligh generalization by the method
used above.

Theorem 12.

(3)
where

If f(x)eL and (1) holds, then
Is(x)lg16 6(x, f)+O(1),

Proof. We put ,(t)-,f(x + t)-f(x- t) and

/n

I+j+o().

Then by integration by parts
sinnt n____c__os___tfI=

t t /v
(u) du dt,

hence we have

"/’llf f’tI2nJ 7 (u)dudt4nO(x,,f) f).

Hence it is sufficient o prove that J=O(1)+ 12 0(x, f). As in the
proo of Theorem 6 we get J-O(1), J:-o(1) and J-O(1). Thus
it remains only o show Chat IJ::12 0(x, f). Integrating by parts
we have

/’,/rt

J=---J J(u+,/n)dun

( n cos t
= (t + 2j/n)(t + (’- 1)in)

,and hen

n a= \ (2j-

n ,(_ 1

.(1_<.- e (x, f). i)-
sin nt (2t + (4i- 1)r/n) dt

Thus ’the result 2ollows.
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9. S. Izumi showed the author hat Theorem 1 (iii) and Theorem
4] are contained n his theorem 5"
Theorem 13. If

lo(u)Idu-o(h), as h->O

and

(1)
i , U

as n->oo, then the Fourier series of f(t) converges at x, where
(p(t) f(x + t) +f(x-- t) 2f(x).

For the proof it is sufficient to show that the condition (2) in
Theorem 6 is implied by (1). This may be seen 2rom he proof of
Theorem 6.
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