23. Note on the Mean Value of $\mathrm{V}(\mathrm{f})$. III

By Saburô UchiYama
Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. Suetuna, m.J.a., Feb. 13, 1956)

1. Let $G F(q)$ denote a finite field of order $q=p^{\nu}$ and put

$$
\begin{equation*}
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x \quad\left(a_{j} \in G F(q)\right) \tag{1.1}
\end{equation*}
$$

where $1<n<p$. Let $V(f)$ denote the number of distinct values assumed by $f(x), x \in G F(q)$. It is known [1] that

$$
\begin{equation*}
\sum_{\operatorname{deg} f=n} V(f)=c_{n} q^{n}+O\left(q^{n-1}\right), \tag{1.2}
\end{equation*}
$$

where the summation on the left-hand side is over all polynomials of degree n of the form (1.1) and

$$
c_{n}=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n-1} \frac{1}{n!}
$$

In other words, the mean value of $V(f)$ over all polynomials f of degree n is asymptotically equal to $c_{n} q$.

Professor Carlitz has proposed, in a written communication to the author, a problem to evaluate the sum

$$
\sum_{\operatorname{deg} f=n} V^{2}(f) .
$$

Here we wish to present a solution of this problem by proving the following

Theorem. Under the Riemann hypothesis for L-functions we have

$$
\begin{equation*}
\sum_{\operatorname{deg} f=n} V^{2}(f)=c_{n}^{2} q^{n+1}+O\left(q^{n}\right) \tag{1.3}
\end{equation*}
$$

where the summation on the left-hand side is extended over all polynomials of degree n of the form (1.1).

Thus the variance $q^{-n+1} \sum_{\operatorname{deg} f=n}\left(V(f)-c_{n} q\right)^{2}$ is of order $O(q)$.
The L-functions mentioned here were introduced and employed in [3] with certain characters defined over the polynomial ring $G F[q, x]$. For the effect of the Riemann hypothesis, see [3, Proposition 3].
2. Following the notation of $[2, \S 3]$ we write

$$
\lambda=\lambda^{(1)} \lambda^{(2)} \cdots \lambda^{(n-1)}
$$

and put

$$
\tau_{j}(\lambda)=\underset{\operatorname{deg}}{=} \sum_{M=j} \lambda(M),
$$

the summation being over the primary polynomials in $G F[q, x]$ of degree j. Then, we have, as before,

$$
\tau_{j}\left(\lambda_{0}\right)=q^{j},
$$

$$
\tau_{j}(\lambda)=0 \quad\left(\lambda \neq \lambda_{0}, j \geqq n-1\right)
$$

and

$$
\begin{equation*}
\tau_{j}(\lambda)=O\left(q^{j / 2}\right) \quad\left(\lambda \neq \lambda_{0}, 1 \leqq j<n-1\right) \tag{2.1}
\end{equation*}
$$

by the Riemann hypothesis.
Let us consider the sum

$$
C_{n}(\lambda)=\sum_{\operatorname{deg},} \sum_{=n}^{\prime} \lambda(M),
$$

where, in the summation $\Sigma^{\prime}, M=M(x)$ runs over the distinct primary polynomials in $G F[q, x]$ of degree n which admit at least one linear polynomial factor in $G F[q, x]$. We have, as in [2, §3],

$$
\begin{equation*}
C_{n}\left(\lambda_{0}\right)=c_{n} q^{n}+O\left(q^{n-1}\right) \tag{2.2}
\end{equation*}
$$

and if $\lambda \neq \lambda_{0}$, then

$$
\begin{equation*}
C_{n}(\lambda)=O\left(q^{n / 2}\right) \tag{2.3}
\end{equation*}
$$

by virtue of (2.1) (cf. [2, §3]).
3. Now, the number $V(f)$ of the distinct values assumed by

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x \quad\left(a_{j} \in G F(q)\right)
$$

is equal to the number of b 's in $G F(q)$ for each of which the polynomial

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+b
$$

admits at least one linear polynomial factor in $G F[q, x]$. Thus

$$
q^{n-1} V(f)=\sum_{\lambda} C_{n}(\lambda) \lambda(f)
$$

and hence, using (2.2) and (2.3),

$$
\begin{aligned}
q^{2(n-1)} \sum_{\operatorname{deg} f=n} V^{2}(f) & =\sum_{\operatorname{deg} f=n} \sum_{\lambda, \lambda^{\prime}} C_{n}(\lambda) C_{n}\left(\lambda^{\prime}\right) \lambda(f) \lambda^{\prime}(f) \\
& =\sum_{\lambda, \lambda^{\prime}} C_{n}(\lambda) C_{n}\left(\lambda^{\prime}\right) \sum_{\operatorname{deg} \rho=n} \lambda(f) \lambda^{\prime}(f) \\
& =q^{n-1} \sum_{\lambda} C_{n}(\lambda) C_{n}(\bar{\lambda}) \\
& =q^{n-1}\left(C_{n}^{2}\left(\lambda_{0}\right)+\sum_{\lambda=\lambda}\left|C_{n}(\lambda)\right|^{2}\right) \\
& =q^{n-1}\left(c_{n}^{2} q^{2 n}+O\left(q^{2 n-1}\right)\right),
\end{aligned}
$$

from which follows (1.3) at once.
Concerning the variance we have

$$
\begin{aligned}
\sum_{\text {deg } f=n}\left(V(f)-c_{n} q\right)^{2} & =\sum V^{2}(f)-2 c_{n} q \sum V(f)+c_{n}^{2} q^{2} \cdot q^{n-1} \\
& =c_{n}^{2} q^{n+1}+O\left(q^{n}\right)-2 c_{n} q\left(c_{n} q^{n}+O\left(q^{n-1}\right)\right)+c_{n}^{2} q^{n+1} \\
& =O\left(q^{n}\right)
\end{aligned}
$$

by (1.2) and (1.3). This completes the proof of the theorem.

References

[1] S. Uchiyama: Note on the mean value of $V(f)$, Proc. Japan Acad., 31, 199-201 (1955).
[2] -: Ditto. II, Proc. Japan Acad., 31, 321-323 (1955).
[3] -: Sur les polynômes irréductibles dans un corps fini. II, Proc. Japan Acad., 31, 267-269 (1955).

