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Mathematical Institute, Tokyo Metropolitan University, Tokyo

(Comm. by Z. SUETUNA, M.J.A., Feb. 13, 1956)

1. In ,he preceding paper [1], we have proved the following
Theorem 1.1) If 19 >1, > 0 and

f(x + t)-f(x-t)l ).
then the series

converges almost everywhere, where s(x) denotes the nth partial sum
of the Fourier series of f(x).

We shall here consider the case -1 and in fact prove the
following

Theorem 2.2) I,f f(x) is di.erentiabe almost everywhere and

f’(x + t) f’(x t) l’dx

where 19 > 1 and fl > 1, then the series

( 2 )
converges almost everywhere.

More generally, the condition (1) may be replaced by

n-o(n-)<
where

1/

I,f’(x+h)-f’(x h)lma: (f  dx)
The mehod of proof is similar o hat of [1.

2. For the proof of Theorem 2 we need a lemma due o
A. Zygmund 2"

Lemma. Suppose that p> 1 and

where II ll denotes the L’-norm and suppose that
t--1

IAi M,

1) In [1], it is written that p__l, but the case =1 is trivial. The assump-
tion that "f(t) is of the power series type ", and its foot-note are superfluous.

2) G. Sunouchi and T. Tsuchikura remarked the author that the case p=2 is
equivalent to a theorem of Tsuchikura
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(4)

then

then

Let us now prove the theorem. It is sufficient to prove that
he integrated series of (2)

is convergent. or the sake

f(x)
=1

f’(x) iGe.
By the condiion (1)

li ce sin tllG A/(log),
and by the M. Riesz Cheorem

,cesin,t A log

If we take t=/2+, hen we get, by the lemma,

c
The estimation holds even if he lower limi of he lef side sum-
marion is replaced by m such ha 2 <m<2-, and is uer limi
by

Thus (8) is less han

?= n=l

A 2/2n
=I =I

which is he required.

3. Le f=(t) denote he h derivative of f(t)(el. [8]). If
f(t) is ffiven by (4) and f=(t) is ineffrable, then

=I

Then we can prove he followinff
Theorem 3. If 0<<i

f:(x + t)-f:(z t) l dt

where >1 ad >1, the the
where.
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