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1. Introduction. Let X be a normal space. We shall denote
by ““dim X'’ the covering dimension of X and by ‘inddim X"’
the inductive dimension of X which is defined by separation of
closed sets; dim X <mn if every finite open covering of X has an
open refinement of order <% -+1, and ind dim X <= if for any pair
of a closed set F' and an open set G with FCG there exists an
open set V such that FCVCG, inddim (V—V)<n—1, where by
definition ind dim X= —1 if and only if X is empty.

In this paper we shall establish the following generalizations of
W. Hurewicz’s theorems.?

Theorem 1. Let f be a closed continuous mapping of o normal
space X onto a mormal space Y such that the inverse image f~ ()
consists of at most k+1 points for each point y of Y. Then we have

dim Y < ind dim X+F%.
Theorem 2. Let f be a closed continuous mapping of a normal
space X onto a paracompact Ti-space Y such that
dim fYy) = m
for each point y of Y. Then
dim X <ind dim Y +m.

2. Lemmas. Let & be an open covering of a space X and A
a subset of X. We shall write (§)-dim A<n if there exists an
open covering of a subspace A which has an order <n+1 and is a
refinement of 6.

Lemma 1. Let X be a normal space. Then we have dim X <n
if and only if, for any pair of a closed set F' and an open set G
with FCG and for any finite open covering & of X, there ewvists
an open set V such that

FCVCG, (®)-dim(V-V)<n—1.

This is proved in [4]. From this lemma we get immediately
Lemma 2 which is due to N. Vedenisoff.

Lemma 2. If X ¢s a normal space, then we have

dim X <ind dim X.
In case A is a closed subset of a mnormal space X, we shall

1) W. Hurewicz proved these theorems for the case where X and Y are separable

metric spaces. Cf. [2], [3]. In [7] we have used Theorem 1 for the case of metric
spaces.



162 K. MORITA [Vol. 32,

write dim (X, A)<» if dim F <% for every closed set F' of X such
that FCX—A. From the proof of [4, Theorem 2.2] we obtain
Lemma 8 below, and Lemma 4 is a direct consequence of Lemma 3
and the sum theorem.

Lemma 3. Let A be a closed set of a normal space X and & a
Jfintte open covering of X. If

(G)-dim A <n, dim(X, A)=<n,
then
(©)-dim X <n.

Lemma 4. [f A s a closed set of a normal space X, then
dim X=Max (dim A4, dim (X, A)). More generally, if {A;} s a count-
able closed covering of X such that A, CA,., t=1,2,---, then
dim X=Max (dim (A;, A;_,)) where we put A,=0.

Lemma 5. Let X be a normal space and & a locally fintte open
covering of X. Then we have (8)-dim X <n if and only if there
exist m+1 closed (or open) subsets P,, 1=0,1,---,n, such that

X:fPi, (G)-dim P, <0, i=0,1,- - -, n.
=0

Proof (cf. [4]). Let (§)-dim X<n and 8= {G,lac}. Then
there exists an open covering {U,} of X with order <»n+1 such
that U,C G, for each «. We take further an open covering {V,}

of X such that V,c U, for each a. If we put
Py= V(Q)T—f%)’ Qo= V(if:ovdt):
where the sum is taken over all systems of n-+1 distinet indices

g, @y, ay from ©, then P, is closed and
($)-dim P, <0, (O)-dim(X—Q)=n—1,

since the order of {ZUaiIai €, 1=0,---,n}=1 and the order of
=0

{(X—Q)~V,|aec2}<n. By repeated application of this process

we have a decomposition desired in the lemma. It is obvious that

for each ¢ there exists an open set P7 such that P,C P}, (§)-dim
¥ =0.

Conversely, if there is such a decomposition, we have clearly
(®)-dim X <.

3. Proof of Theorem 1. We shall prove Theorem 1 by induc-
tion on ind dim X==%. The theorem is trivially true in case ind dim X
=—1. We shall assume the theorem for ind dim X<n—1.

Let inddim X=n. If k=0, we see by Lemma 2 that the theo-
rem holds. We shall prove the theorem for k=%, assuming it for
k<Fk,—1.

For any pair of a closed set F and an open set G of Y with
FC G we shall prove the existence of an open set V' of Y such that
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(1) FCcVvcG, dim(V-V)=n+k,—1.
By the assumption that ind dim X==%, there exists an open set

H of X such that f '(F)CHCf (@), inddim (H—H)<n—1. Let
us put V=Y —f(X—H). Then we have

(2) V-VCf(H)-V, FCVCG.

If we put K=f(H)—V, K,=f(H—H)—V, then by the assumption
of induetion (concerning ind dim X) we have dim K, <n—1+k,, since
ind dim(H—H)<n—1 and the partial mapping f|(H—H)~f (K,
is closed.

Let M be any closed set of K (and hence of Y) contained in
K—K,. If we denote by f; the partial mapping of f whose domain
is (X—H)~f"YM) and whose range is M, then f; is a closed onto
mapping such that f,(y) consists of at most %k, points for each
point y of M, since MC K— K, Cf(H)—V Cf(H)~f(X—H). Hence
by the assumption of induction on % we have dim M <n+k,—1,
since ind dim (X— H) ~f (M) <ind dim X <n. Therefore dim (K, K;)
<n+k,—1.

We now apply Lemma 4 to our case and we get dim K <n+k,—1
and hence

(8) dim (V—~V)=n+k,~1.
By (2) and (8) we see that V satisfies the condition (1). By Lemma
1 we have dim X <n-+#k, This completes our proof.

4. Theorem 3. Under the same assumption as in Theorem 1,
if dim X <1, we have dim ¥ < dim X+ k.

Proof. In case k=0 the theorem holds clearly. Assume that
the theorem holds for k<k, we shall prove the theorem for k=k,.
Let 7 and G be a closed and an open sets of Y such that FCG
and let & be any finite open covering of Y. We put 9= {f YU)|
Ue®}. Let dim X=1. By Lemma 1 there exists an open set H
of X such that f(F)CHCfYG), (9)-dim (H—H)=<0. If we put
V=Y-f(X—H), K=f(H)-V, K;=f(H— H)—V, we have FCVCQG,
(®)-dim K, < k,, while dim (K, K,) <k, by the assumption of induction.
Thus we have (&)-dim (V—V) <k, by Lemma 3; this shows by Lemma
1 that dim Y <Fk,+1.

Remark. In case X is a totally normal space in the sense of
C. H. Dowker [1] it can be shown that under the same assumptions
as in Theorem 1 we have ind dim Y <ind dim X+ %.

5. Proof of Theorem 2. We shall carry out our proof by
induction on ind dim Y. The theorem is trivially true if ind dim Y
=—1. Assume the theorem for inddim Y <n—1. Let ind dim Y=n.
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Let & be any finite open covering of X. By the assumption
of the theorem, for each point y of Y there exists an open set
H, of X such that
(4) (6)-dim H,=m, f'(y)CH,.

If we put V,=Y— f(X— H,), then V, is an open neighbourhood
of ¥ and
(5) iy f(V,) CH,

Since Y is paracompact, there exists a locally finite open cover-
ing U={U,|« € £} which is a refinement of {V,|y ¢ Y}. The space
Y is normal as the image of a normal space under a closed con-
tinuous mapping. Hence there is a closed covering {F,|a e 2} of
Y such that F,C U, for each a.

Sinece ind dim Y=n, there exists for each a an open set W,
such that F,cW, W,c U, inddim (W,— W,)<n—1.

Assuming that the set £ of indices consists of all ordinals less
than a fixed ordinal «, we put

H=W,; H,= W“—BZW‘*’ a>1.
Then we have
(6) Y= {H, acQ)
and ind dim H, ~ H,<n—1 for a=:8, since H,~ H,CW,— W, if
B<a.
By the assumption of induction we have

(7) dim f~'(H,) ~f (Hy) =m+n—1, for a=xp.

On the other hand, for each « H,C U, and each U, is contained
in some V,. Therefore we obtain by (4) and (5)

(8) (G)-dim f~Y(H,) =m =m+n.

Since fYH)Cf YU,) and {f %U,)} is a locally finite open
covering of X, by [5, Theorem 8] we conclude from (7) and (8)
that ($)-dim X <m+n. Therefore we have dim X <m+n since @
is arbitrary, and hence the theorem holds for any Y with ind dim Y
=n. This completes the proof.?

6. Theorem 4. Let f be a closed continuous mapping of o
normal space X onto a paracompact T-space Y such that dim f~'(y)
=<0 for each point y of Y. Then dim X<dim Y.

2) For the special case where X is an Ss-space (any CW-complex is an Ss-space;
for the definition, c¢f. [6]) we can prove the relation dim X <ind dim* Y+m under the
same assumption as in Theorem 2, where inddim* Y means the inductive dimension
of Y in the sense of Menger-Urysohn; this relation is proved also by K. Nagami
independently.

Added in proof: He also proved Theorem 2 under a more restrictive assumption;
cf. his forthcoming paper.
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Proof. Let & be any finite open covering of X. Then for
each point y of Y there exists an open neighbourhood V, of y such
that
(9) (®)-dim £~(V,) < 0;
this is seen as in the proof of Theorem 2 (cf. (5)).

Let U be a locally finite open covering of Y which is a refine-
ment of {V,|yeY}. Let dim Y=%. Then by Lemma 5 there exist
n+1 closed sets Q,, ¢=0,1,---,n such that

Y= \nJQi; (W)-dim @, <0, 1=0,1,-- -, n.
4=0

Since each set belonging to U is contained in some V,, it follows
from (9) that (&)-dim f(Q;)=0, ¢=0,1,.--,n. According to Lemma
5 this shows that (§)-dim X <#». Thus we have dim X <n.

From the above proof we obtain immediately

Lemma 6. Let f be a continuous mapping of a normal space X
onto a paracompact normal T,-space Y and & o locally finite open
covering of X. If for every point y of Y there exists a netghbourhood
V(y) of y such that (&)-dim f*(V(y)) <0, then ($)-dim X <dim Y.
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