No. 5]

74. Contributions to the Theory of Semi-groups. III

By Kiyoshi ISÉKI

Kobe University

(Comm. by K. Kunugi, M.J.A., May 15, 1956)

Recently, the present author [2, 3] and Miss Y. Miyanaga [4] showed that some well-known theorems on compact abelian semi-groups were generalized to homogroups.

Our purpose is to generalize a theorem on compact abelian semigroups to arbitrary homogroups.

A semi-group S is called a homogroup, if

- 1) S contains an idempotent e,
- 2) for every element x of S, there are two elements x' and x'' such that xx'=e=x''x,
- 3) for every element x of S, xe = ex.

Some writers have proved that any simple compact abelian semigroup is a compact group. We shall prove the following

Theorem 1. Any simple homogroup is a group.

For a semi-group with topology, we have

Theorem 2. Any simple compact homogroup is a compact group.

As any compact abelian semi-group is homogroup (see K. Iséki [1]), by Theorem 1, we have the following

Theorem 3. Any simple compact abelian semi-group is compact group.

The proof of Theorem 1. To prove it, we shall use the following lemma on simple semi-groups by D. Rees [5].

Lemma. A necessary and sufficient condition for semi-group S to be simple is that SxS=S for every element x of S.

Let S be a simple homogroup, and e the idempotent stated in the condition 1), then, by the simplicity of S and Lemma, we have

$$SeS=S.$$

By the condition 3), we have

$$S \cdot Se = S$$
.

 $S^2(=S \cdot S)$ is a two-sided ideal of S and contains the idempotent e. If $S^2=e$, then, by (*), we have

$$e^2 = e = S$$
.

Hence S is a group. On the other hand, if $S^2=S$, (*) implies Se=S.

By a well-known theorem (see G. Thierrin [6]), the set Se is a group ideal of S. Therefore S is a group. The proof is complete.

Therefore, we have the following

Theorem 4. The closed minimal ideal of a compact abelian group is a compact group.

References

- [1] K. Iséki: On compact abelian semi-groups, Michigan Math. Jour., 2, 59-60 (1953).
- [2] K. Iséki: Contribution to the theory of semi-groups. II, Proc. Japan Acad., 32, 225-227 (1956).
- [3] K. Iséki: A generalisation of a theorem by S. Schwarz on semi-groups (to appear soon).
- [4] Y. Miyanaga: A generalisation of Wallace theorem on semi-groups, Proc. Japan Acad., 32, 254 (1956).
- [5] D. Rees: On semi-groups, Proc. Cambridge Philos. Soc., 36, 387-400 (1940).
- [6] G. Thierrin: Sur les homogroupes, C. R. Acad. Sci., Paris, 234, 1336-1338 (1952).