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132. Note on Dimension Theory

By Jun-iti NAGATA
Department of Mathematics, Osaka City University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

Recently we have studied some necessary and sufficient conditions
for n-dimensionality of general metric spaces.) The purpose of this
note is to develop the previous results. That is, we shall give a
generalization of our previous theorem concerning the relation between
(Lebesgue’s) dimension and covering and shall give some relations
between metric function, length of covering and dimension. Moreover,
we shall investigate embedding of n-dimensional metric spaces into
products of 1-dimensional spaces on the foundation of our previous
results.

All the topological spaces considered here are general metric
spaces or metrizable spaces, and all the coverings are open unless
otherwise mentioned.

Definition. A real valued function p of two .points of a topologi-
cal space R is a non-Archimedean parametric if

i) y)_>_ 0,

ii) p(x,y)-p(y,x),
iii) [y[ g(x,y)<} is open for every 0,
iv) p(x, y) max[g(x, z), g(y, z).

Theorem 1. In order that dimR n for a metrizable space R it
is necessary and su2?icient that one can assign a metric g(x, y) agreeing
with the topology of R such that p(x, y)-inf [0(x, z) + go(z, z) +-.-
+ po(Z, Y)! z R}, go(X, y)- min [g(x, Y)! i- 1,..., n + 1} for some n + 1
non-Archimedean parametrics g(x, y) (i-1,. ., n + 1).)

Proof. Necessity. Let dim Rn, then there exist n + 1 0-dimen-
n+l

sional subspaces R such that R-R from the general decomposition
i--1

theorem due to M. Kattov and to K. Morita.) We assign a metric
p’(x,y) of R such that g’(x,y)l. Since R (i-l,...,n+l) are 0-
dimensional, we get disjoint coverings) 1 (i= 1,..., n + 1, m= 1, 2..-)

1) A theorem of dimension theory, Proc. Japan Acad., 32, No. 3 (1956). On a
relation between dimension and metrization, Proc. Japan Acad., 32, No. 4 (1956).

2) This theorem contains, as a special case for n=0, Groot’s theorem. See J. de
Groot and H. de Vries: A note on non-Archimedean metrizations, Proceedings Koninkl.
Nederl. Akademie van Wetenschappen, Ser. A, 58, No. 2 (1955).

3) M. Kattov: On the dimension of non-separable spaces I, Czechoslovak Math.
Jour., 2 (77) (1952). K. Morita: Normal families and dimension theory for metric
spaces, Math. Annalen, 128 (1954).

4) We call a collection 1I of open sets disjoint open collection if every intersection
of two disjoint elements of 1I is vacuous. If 1I is a covering, it is called a disjoint
covering. See "A theorem of dimension theory."
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of R such that l[/< lI, lt< (R) in R for (R)- S/(x)]x R}, where
S/(x)-- [yg’(x, y)<l/2}. We define open disjoint collections (i-1,
..,n+l,m-0,1...)of R asfollows. --[R}. LetlI+-[aeA},

then for every point xeR we can find aeA such that xeU and
e(x)>0 such that S()(x)RU, S()(x)S for some Se+ with
SU. We put V- [S()/(x)xe UR} (S). If is defined,

bythen we define + + - V[aA}. Then (i=1,...
n+l,m-0,1..-) are obviously open disjoint collections such that

+<<. Now we define a real valued function of two points
by (x,y)-inf[1/2"-]yS(x,)}.) Then it is easily seen that
is a non-Archimedean parametric. It is also obvious that (x,y)
==inf [go(X, z)+ + po(z,,y)[zR} (po(X, y)--min [p(x,y)[ i--l,---,n+ 1})
is a metric of R.

Sufficiency. Let g(x, y) is a metric of R satisfying the condition,
n+l

then we see easily that R--R for R- [x[p(x, x)--O}. To see this,
i=l n+l

we assume the existence of x eR such that x R. Then it must
i=l

be g(x,x)->O (i-1,...,n+l), and hence from the property of p,
it holds p(x,y)-max[g(x,y),p(x,y):]g(x,x)-s for every yeR.
Therefore g0(x, y) mine>0, and hence g(x, z) min>0 for every
z eR, which is a contradiction.

Putting S.(x)= [y[p(x, y)<l/m}, we see easily from iv) that
S(x)S1/(y) implies S(x)-S/(y). Hence ,--.[S:/(x)R]
xeR} (m--l, 2..-) are open disjoint covering of R. Moreover, since
ye S(x, 5) implies p(x, y) p(x, y) < 1/m, [II m-- 1, 2-.. is an open
basis of R. Thus we conclude dim R-0.) This combining with

n+l

R-R implies dimRn from the general decomposition theorem.

Next we proceed to generalize our previous theorem:
In order that a T-topological space R is a metrizable space with

dimRn it is necessary and sucient that there exists a sequence
> > >... of open coverings such that S(p, ) (m-l,2-.-)

is a nbd basis for each point p of R and such that each set of
intersects at most n + 1 sets of

Theorem 2. In order that a T-topological space R is a metrizable
space with dimRn it is necessary and sucient that there exists a
sequence > > of open coverings such that S(p, )
(m-1, 2...) is a nbd basis for each point p of R and such that order
n+ (m--, 2...).

5) A={PQ]Pe, Q e} for open collectidS , . < for open collections, means that PQ for every Pe and for some Q
6) We use Tukey’s notations. See convergence and uniformity in topology (1940).
7) See Morita" Loc. cit.
8) A theorem of dimension theory, Theorem 2.
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Proof. Since the necessity is contained in the above theorem,
we prove only the sufficiency. Let -fVIeA}, then we define
U by U,-{VIS(V, )V,V}. lt- {UIA} is an open cover-
ing of R such that >, and each set of intersects at most
n+l sets of lt. Next, we define U by U-’[V]S(V, ,)V,
for --[VB}. Then for H--{U]B} it holds <
<<<lt. Since each set of intersects at most n+l sets of
lts, we can repeat this process and get a sequence

>>lt>lt>>-.. of open coverings such that each set of
intersects at most n+l sets of lt_. Hence
is a sequence satisfying the condition of the above theorem, proving
dim R n.

Theorem 3, Let n-ha +n +. +n for non-negative integers n
(i- 1,..., k). f thee exist sequences > > > >... (i- 1,...,
k) of open coverings of a T-space R such that order n 1 and

k

such that S(p, ) for -A (m--1,2...) is a nbd basis of p,

then R is a metrizable space with dimRn and can be embedded in a

product of k metrizable spaces R (i-1,..., k) with dimRn. (This
theorem contains as a special case the suciency part of Theorem 2.)

Proqf. As in the proof of Theorem 2, we can select sequences

lI >lt*>l>* >--. (i--l,.. -, k) of open coverings such that
S(p, lt,+) intersects at most n + 1 sets of lt and such that S(p, l[)
(m--l, 2...) is a nbd basis of p for lI- AlI. Let ,--.{U[aeA} for

fixed m, i, then we put V--S(U,II+), W,-=R, W/,,--S(3,

-=S(W/:+, lI+,), W/:+--S(V:, tI+,),.... Defining f(x)-inf[r[
x W}, we get continuous functions f(aA) satisfying f,(V:)-O,
f,(U)-l/2-. Clearly, for every >0 there exists l-l(e) such
that yS(x, lI) implies ]f,(x)-f(y) < (aA, m--l, 2..-). We
eonsider a topological produet P-P I a A, m-- 1, 2..- of P--
0x1/2-} (qA). Then we define a mapping F of R into P
by F(x)- {.f(x) aA, m 1, 2... (xR).

Now we proceed to prove that F,(R) (P,) is a metrizable spaee
with dimF(R)n. Since N=F(R)[ [p} ]p>0} (aA) are open
and since f(U)-- 1/2, U a A R, t.,,-- N a e A.. is an

open eovering of F(R). Let us show order On+l. IfN
j=l

and a A (j- 1,..., h), then we ean choose p-- [p} F(R) and x eR
h

such that pN, F(x)--p. Since f(x)=p>O (j-1,...,h), it
j=l

holds x V, aA (j-l,..., h). 0n the other hand, since each S(p,
9) f(v)=a means f(x)=a (x e V).
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H,/) intersects at most n+l sets of lI, we have order [V--S(U,
lt/l)laeAl n+l. Therefore we have hn+l. This means order

mi ni + 1. Moreover .m/l<, and S(p,) (m--l, 2.-.) is a
nbd basis of each point p of F(R); its proof is left to the reader.
From Theorem 2 we can conclude the metrizability of F(R) and
dimF(R) n / 1.

Now we define a mapping F(x) of R into FI(R) F2(R) Fk(R)
by F(x)--(Fl(x),..., Fk(x))FI(R)... F(R) (xR). Then F(x) is,
as easily seen, a homeomorphic mapping and consequently R is homeo-
morphic with the subspace F(R) of the product space F(R)...

FI(R) with dim F(R)n (i=1,---,/). From the general product
theorem due to Kattov and Morita1) we have dim Rnl +... +n--n.

Theorem 4. Every metric space R with dimRn can be topologi-
cally imbedded in a topological product of n + 1 at most 1-dimensional
metric spaces.

Proof. If dim Rn, then it is easily shown that we can assign
a covering and open collections 11 (i=1,..-, n/ 1) for every covering

n+l
l[ of R such that 3< /lI<lI and such that each S(p, ) intersects

i=l n+l

at most one of sets belonging to lt for a fixed i. Because R=
i=1

for some R with dimR-0, and hence there exists a disjoint cover-
ing of R such that < in R. For every point x of R we
denote by e(x) a positive number such that S()(x)RVe,
S((x) U for U defined by V. Then 3- [S(x/.(x) lx
V e} is an open collection of R with <:1t. Selecting a cover-

n+l i=l

ing with *<: V, we can define an open collection lI by
i=l n+l

W! S(W,)V}I V: e}. It is easy to see that /lt covers
i=l

R and that each set of intersects at most one of sets of lt.
Choosing a covering with **<, we have open collections and a
covering satisfying the required condition.

We denote by (R)1 :> (R)* :> (R)2 > (R)* :>" a sequence of covering such
that S(p,(R)) (m-l, 2.-.) is a nbd basis for each point of R, and
take a covering and collections 1[ (i--1,..-, n+ 1) having the above

n+l

property for (R)2, i.e. < /t1<. and S(p, ) intersects at most one
i=l

set of lt1. Let lt U aeA} and define )1. by 91-- [S(U, ), R
-UIaeA} for a fixed i, then ) is a covering with order 2.
aA n+l n+l

Moreover, <(R) is obvious from (R)* < and from that [_J [[ covers
i=l i-i

R.
Now we notice that every covering with order 2 has a locally

finite star-refinement ’ with order <:2. To show this, we put

10) Loc. cit.
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[P’IS(P’, 3)P, P’e’}leD} is a locally finite refinement of

with order 2. We define an open set L for every eD such that

M- M,LL.M and put Q--L-"-L,, -- [Q,
8--.6 D 8z:8

a,D, a4=}. It is easy to see that is an open covering such
that <, order ,2. Repeating such a process we have a locally
finite -refinement ’ of , with order 2. ,’ satisfies the required
conditions.

To show the existence of sequences >) :> >.. (i- 1,
n+l.., n + 1) of coverings with order 2 such that / -m< (R), we assume
i=l

the existence of such .t for lm. Then, there exists, from the
above notice, a locally finite covering with order 2 such that
.* <. Next, we can select open collections (i-- 1,..., n / 1) and

n+l m+l

a covering *-0,, such that g)Am+2:" /i>.,.. for with **<
i=1 i=l

and such that each S(p, ,) intersects at most one of sets belonging
to for a fixed i. We put %-{P IeB}, 9.-{N.lT<r and denote
by 7(/9) the first ordinal 7 such that S(P, (C).)Nre for /geB. Then
we define a covering 9, by Kr, S(P, .) 7< r, e B}, where
we put Kr-- Nr- {P 7-- 7(/9)} {S(P, ) 77(/9)}. It follows
easily that 9/<9 and order ./2; its proof is left to the reader.

n+l n+l n+l

It holds, from the fact that V 3 covers R, 5,+<(V)*
i=l i=1 i=l

< (R)/. The formula %/<9 combining with 9* <9 implies
9%*/<9. This completes the induction, and hence we get sequences

n+l.>9>9>... (i- 1,..., n + 1) such that A<(R), order
i--1

2. Hence we can imbed, from Theorem 3, R into a topological
product of n+l metrizable spaces R with dim Rl.

Definition. We call a covering It a multiplicative covering if every

non-empty intersection U of elements U (i--1,..., k) of lI is an
i=1

element of
Definition. Let n be the maximal number such that there

exists a sequence UU....:U of elements of a multiplicative
covering , then n is called the length of 1/.

Definition. We mean by the rank of an element U of a multi-
plicative covering l[ the maximal number r such that there exists a
sequence U= U:U.--. Ur of elements of

Theorem 5. In order that a T-space R is a metrizable space
with dimn it is necessary and sucient that there exists a sequence

11) The definitions and investigations on length of finite covering are due to P.
Alexandroff and A. Kolmogoroff: Endliche Uberdeckung topologisher Riume, Fun.
Math., 26 (1936).
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lI >II*= >lL.’.>lI*a >.. of multiplicative coverings with length n +
such that S(p, lt) (m-1, 2...) is a nbd basis of p.

Proof. Since the necessity is clear, we show only the sufficiency.
Let us assume the existence of a sequence satisfying the condi-

tion of the proposition. If we denote by Vr(tzeAr) all the elements
of lt with rank r, then 1I- U aeA, r- 1,..., n+ 1}. We define
V: (i-1,..., n+l) by V[)-- Urn, YC.)- [x]S(x, H)V-1)} (i-2, 3,

--, n + 1).12) It follows easily that Vt:t+l){’--oo,

__
v<.). vv)--. Ur, and

<{v<*IaeAr,r-1. ..., n+l} (i-1, ., n+l) and S(V<O., lI) V}2-_ (i
-2,. n+ 1). Next, we define M, (i-l,... n+ 1) by M= z<)-U,

i:::) l-a2:} (i--2,..., n+l). Let us show H+<-- {M
r=l,...,n+l}. Sincel[+:<{v.)]eA,r-l, 2,...,n+l},itispossi-
ble to find for every Ueltn+: the minimum number r such that
U. If it holds US( , lin+:) for some k with lkr-1, and
for aeA, then we have, from lIn+:<l[, US(V 1t)V57
which is a contradiction. Hence it must be S(c+v:,, t+)-+ (1
-1, E+A). This combinin with Z implies M:, provin

+ . It remains to prove order + 1. In the case , +
a implies clearly M:M-.U:U-+.

To show the same assertion for rl, we prove that U:U
U,+ for a, 2 + A, 7 e A, generally implies v( VIps= v First,TT

V:) V(:) v) is obvious. Conversely, there exist nbds P(x) Q(x)"T r
of xeV(:). .V(:) such that S(P(x),lt:)U,_ S(Q(x),:)Ur.__ Hence

z() provingS(P(x)Q(x), lt)UU U+r. This means xe +r, r’r
V- V V(; Wev(:. v(.: Repeating this process, we conclude ’r

return now to the proof of the assertion: MM-- (a). Using

the notice above, we have M MVy(),: S( ,r(,, 1[ =)]a eA
r k r/T

lt+)--, where U U- U,r and consequently r’< r; hence order
n+1. Repeating the same process, we get a sequence 9
1,2.--) of coverings with order n+l such that
>l[+,n+. Therefore we have, from Theorem 2, dim Rn.

12) We denote by A the interior of A.


