17. On Hardy and Littlewood's Theorem

By Kenji YANO

Department of Mathematics, Nara Women's University, Nara, Japan (Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1957)

1. Let f(x) be an *L*-integrable function with period 2π , and its Fourier series be

(1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

A. Zygmund [1] has shown the following

Theorem Z. If f(x) belongs to Lip α where $0 < \alpha \leq 1$, then the series (1) is uniformly summable $(C, -\alpha + \delta)$ to f(x) for every $\delta > 0$.

Later, Hardy and Littlewood [2] showed the following

Theorem H., L. If f(x) belongs to $Lip(\alpha, p)$ where $0 < \alpha \leq 1$ and $\alpha p > 1$, *i.e.*

$$\left(\int_{0}^{2\pi} |f(x+h)-f(x)|^{p} dx\right)^{1/p} = O(|h|^{a})$$

as $h \rightarrow 0$, then the series (1) is uniformly summable $(C, -\alpha + \delta)$ to f(x) for every $\delta > 0$.

In this paper we shall improve the above theorem as follows:

Theorem. If f(x) is continuous in $(0, 2\pi)$, and belongs to Lip $(\alpha, 1/\alpha)$ where $0 < \alpha \leq 1$, i.e.

$$\int_{0}^{2\pi} |f(x+h) - f(x)|^{1/a} dx = O(h)$$

as $h \to 0$, then the series (1) is uniformly summable $(C, -\alpha + \delta)$ to f(x) for every $\delta > 0$.

2. The $proof^{(*)}$ of our theorem is as follows. Let

$$\varphi(t) = \varphi_x(t) = f(x+t) + f(x-t) - 2f(x),$$

then we have

(2) $\varphi(t) \rightarrow 0$ as $t \rightarrow 0$ uniformly in $0 \leq x \leq 2\pi$, since f is continuous.

We denote the *n*-th (C, γ) mean of the series (1) by $\sigma_n^{\tau}(x)$, then

$$\sigma_n^{-a}(x) - f(x) = \frac{1}{\pi} \int_0^{\pi} \varphi(t) K_n^{-a}(t) dt$$
$$= \frac{1}{\pi} \int_0^{K/n} + \frac{1}{\pi} \int_{K/n}^{\pi} = I_1 + I_2$$

say, where $K_n^{\mathsf{T}}(t)$ is the *n*-th (C, γ) Féjer kernel and

$$|K_n^{-\alpha}(t)| \leq \frac{n}{1-\alpha} + \frac{1}{2} \quad \text{for } 0 \leq t \leq \pi,$$

^{*)} The method of this proof has been suggested to me by Prof. G. Sunouchi.

[Vol. 33,

and

(4)
$$K_n^{-\alpha}(t) = \Re(e^{int}/A_n^{-\alpha}(1-e^{-it})^{1-\alpha}) + O(1/nt^2)$$

for $0 < t \le \pi$.
By (2) and (3) it holds

$$|I_1| < \varepsilon_n K$$

uniformly concerning x, where $\varepsilon_n > 0$ and $\varepsilon_n \to 0$. And we see easily that, by (4), (2) and boundedness of f,

$$I_{2} = \Re \left(\frac{1}{2\pi A_{n}^{-\alpha}} \int_{K/n}^{\pi} \frac{\varphi(t) - \varphi(t + \pi/n)}{(1 - e^{-it})^{1-\alpha}} e^{int} dt \right) + O(1/K^{1-\alpha}),$$

where O is uniform concerning x.

Replacing $-\alpha$ by $-\alpha + \delta$ we have

$$(5) \qquad |\sigma_n^{-\alpha+\delta}(x) - f(x)| < C_1 n^{\alpha-\delta} \int_{K/n}^{\pi} \frac{|\varphi(t) - \varphi(t+\pi/n)|}{t^{1-\alpha+\delta}} dt + C_2/K^{1-\alpha+\circ} + \varepsilon_n K,$$

where, and in succession, C's are absolutely positive constants, not depending on x.

First suppose that $\alpha < 1$, then since $f \in \text{Lip}(\alpha, 1/\alpha)$ we have

$$n^{\alpha-\delta} \int_{K/n}^{\pi} \frac{|\varphi(t)-\varphi(t+\pi/n)|}{t^{1-\alpha+\delta}} dt$$

$$\leq n^{\alpha-\delta} \left(\int_{0}^{2\pi} |\varphi(t)-\varphi(t+\pi/n)|^{1/\alpha} dt\right)^{\alpha} \left(\int_{K/n}^{\pi} (1/t^{1-\alpha+\delta})^{1/(1-\alpha)} dt\right)^{1-\alpha}$$

$$\leq C_{3} n^{\alpha-\delta} (1/n)^{\alpha} (n/K)^{\delta} = C_{3}/K^{\delta}.$$

In the case $\alpha = 1$, since $f \in \text{Lip}(1, 1)$,

$$n^{1-\delta} \int_{K/n}^{\pi} \frac{|\varphi(t) - \varphi(t+\pi/n)|}{t^{\delta}} dt$$

$$\leq n^{1-\delta} (n/K)^{\delta} \int_{0}^{2\pi} |\varphi(t) - \varphi(t+\pi/n)| dt$$

$$\leq C_4 n^{1-\delta} (n/K)^{\delta} (1/n) = C_4/K^{\delta}.$$

Thus we have from (5)

$$\left|\sigma_n^{-\alpha+\delta}(x)-f(x)\right| < C_5/K^{\delta}+C_2/K^{1-\alpha+\delta}+\varepsilon_nK.$$

With $n \to \infty$ and then $K \to \infty$ we get the desired result.

References

- A. Zygmund: Sur la sommabilité des séries de Fourier des fonctions vérifiant la condition de Lipschitz, Bulletin Acad. Cracovie, 1-9 (1925).
- [2] G. H. Hardy and J. E. Littlewood: A convergence criterion for Fourier series, Math. Z., 28, 612-634 (1928).