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76. On the Norms by Uniformly Finite Modulars

By Tetsuya SHIMOGAKI
Mathematical Institute, Hokkaidé University, Sapporo
(Comm. by K. KUNUGI, M.J.A., June 12, 1957)

Let B be a modulared semi-ordered linear space and m be a
modular®” on R. On R we can define two norms as follows:
_ s o 14-m(éx) s 1
loll=int FEED, pali=int 2 @eR)
[|#]| is said to be the first norm by m and [||z]]| is said to be the
second norm or the modular norm by m. Since we have |||z |||=|| x|
=<2|||z]|| for every xeR (cf. [4]), they are equivalent to each other.

It is well known that if a modular m is finite, i.e. m(x)< -+ co for
all xe R, then the modular norm is continuous, and that the converse
of this is true when R has no atomic element.

In [1] I. Amemiya showed that if a modular m is monotone
complete® and the modular norm is continuous, then the norm satisfies
the following condition: for every 1>e&>0 there exists an integer n
such that the norm of the sum of m mutually orthogonal elements
having their norm more than ¢ is always =1. In this paper we call
the norm satisfying the above condition to be finitely monotone.

We shall investigate the properties of finitely monotone norm and
show the form of the conjugate norm in §1. In §2 we examine the
relations between a modular and the modular norm in case it is finitely
monotone. In fact, we shall prove that if a modular m is uniformly
finite, then the modular norm is finitely monotone. The converse of this
is valid, if we suppose that R has no atomic element.

If a modular is defined on a universally continuous semi-ordered
linear space, then as showed above, we can define the norms whose
convergences are equivalent to the modular convergence.*’ Thus it will
be conjectured that if a norm is defined on a universally continuous
semi-ordered linear space, then there may be defined a modular whose
convergence is equivalent to the norm convergence. In §3 we shall
establish a normed semi-ordered linear space which is a sort of Kothe
space on [0,17], and it answers negatively to this conjecture. Finitely

1) For the definition of the modular see H. Nakano [4]. The notations and

terminologies used here are due to the book [4].
2) m is said to be monotone complete if OgaA)T , i.up m(a,) < + e implies
€4 €4

the existence of \ ;.
A€4

3) A sequence of elements x;eR (¢=1,2,.-.) is said to be modular convergent to
Xy, if lim m(&(x;—x,))=0 for every £>0.
i>00
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monotone norm plays essential role in constructing this example.

81. Let R be a universally continuous semi-ordered linear space
with a norm ||«||. For convenience, we use a notation “® éwz ” in
stead of iélxi when |;|~|x,|=0 for i ==j. =

Definition 1.1. A norm on R is said to be finitely monotone, if
Sfor every >0, there exists an integer m,=n.(e) such that =@ ﬁxi,
Nz <1, ||a:||=e (=12, ---,mn) implies n=<n,. =

About this definition we can see without difficulty that the words
“for every ¢>0" may be replaced by ‘for some 1>e>0" without
changing the meaning of the definition. And we can see also that all
norms on finite dimensional spaces are finitely monotone. A norm on
R is said to be uniformly monotone, if for any v, >0 there exists §>0
such that a~b=0, ||a||<v, ||b||=¢ implies ||a+b||=]|la||+5 (cf. [4,
§30]). Now we have

Theorem 1.1. If a morm on R is uniformly monotone, then it is
finitely monotone.

Proof. For every e>0, there exists 8 >0 such that | z||<1,
lyl|=¢ 2~y=0 implies [|x+y]|/=]|«]||+&", since ||«]|| is uniformly
monotone. Then let %, be an integer such that no>~§7+ 1. If

w:@éxi, 2|1, ||#||=s (¢=1,2,--.,7m), we have
=1 n-1
o]zl® S el+8=- - z(—1)3.
Therefore we obtain n§§+ 1=<m,, which completes the proof.

The converse of this theorem is not true. The example is easily
obtained. The theorems in [3] concerning uniformly monotone norms
remain valid, if we replace the assumption of “wuniformly monotone”
by ¢ finitely monotone” without adding any difficulty in the proofs.

Truly we can state (cf. [3, Theorems 14.4, 14.7])

Theorem 1.2. If a norm on R is semi-continuous and finitely
monotone, then it is continuous.

Theorem 1.3. If a norm on R is finitely monotone and complete,
then it is monotone complete and continuous.

Now we define

Definition 1.2. A norm on R is said to be finitely flat, if for

every >0 there exists e=e(y) such that xz@éxi, e ll=1, ||2;|]|<e
i=1
(1=1,2,: -+, m) implies n_z-Z-H x|
It is easily seen that all norms on finitely dimensional spaces are

always finitely flat. Because, if we choose ¢ such that s<]%, in case
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of N-dimensional space, we have ||z ||<1 for such « that x=@ glei,
”xz”§8 (t=1,2,---, N).

R' denotes the norm conjugate space of R, i.e. the space of norm
bounded universally continuous linear functionals on R, and || % ||(® eR"
denotes the conjugate norm of ||«|| on R. Then we have

Theorem 1.4. If a morm on R s finitely monotone, then the

conjugate norm is finitely flat.

Proof. For an arbitrary y>0, we choose ¢’ such that 0<e’«y<%.
For such ¢’ there exists also an integer n,=mn,(¢") (which appears in
Definition 1.1), since the norm on R is finitely monotone by assumption.

Here we set e:e(y):h}——. If there exist a‘cieﬁu (t=0,1,.--,n) such
n,

0

that wo—E\—)le, |[x0|[>1 % ||<e (:=1,2,---,n), then we can find
y € R such that on]l——-« <Z(y), ||y ||=1. Putting y,=[%,]"R, we have

(YIRS AR SEXRES ] AP

and

This yields n,<n. Since [|¥||<1 and |y,|~]y;|=0 for i3j, there
exist y;, (j=1,2,---,m—mn,) such that ||y, ||<e¢’ (7=1,2,---, n—ny).
It follows from above that

E WA P[RR

1% 11—

=mneg’ <nes =l
-I— + 9 3

Thus we obtain \127—[|E0||§nee’<gi and n>"||%,||. Therefore the
y €

conjugate norm is finitely flat by definition.

Theorem 1.5. If a norm on R is finitely flat, then the conjugate
norm 1s finitely monotone.

Proof. Let ¢ be an arbitrary number such that 1>¢>0. Now we
choose o' such that «'¢>2. There exists ¢'=¢'(y) (which appears in
Definition 1.2), since ||« || is finitely flat by assumption. If ||Z||=<1,

:Tc:@é@, 1% ||=¢ (¢=1,2,---,n), then we can find 0<yie [%,]%R such

that |z, l(yi)>€§, lly,||<¢. This implies |az|(y)_ e |(y)>_€32ﬁ
where y=@ 31y, [|yl|=1 implies [|7 ] |y[|> " = %—nyngnyn and

[|Z]|>1, which contradicts the assumption on . Therefore we obtain
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lv]|<1 and 1= ";6 , which shows n<:_2;,-. The proof is completed.

Since the “conjugate” of “wumiformly monotone” is “wuniformly
Aat”, ie. for any v,e>0 there exists §>0 such that |a|~]b|=0,
llali=y, IB]|<5 implies [la-+b]|<l|al|+¢[|B]| (ct. [4, §31]), we have
immediately by the above theorems

Theortem 1.6. If a morm on R s uniformly flat, then it is
Sinitely flat.

§2. In this section let a modular m be defined on R and ||| |||
(xeR) be the modular norm by m. Monotone completeness of m will
not be assumed here. A modular m is said to be uniformly finite if

séup1 m(§x)< oo for every £>0. Then we have
m(X) <

Theorem 2.1. If a modular m on R is uniformly finite, then the
modular norm is finitely monotone.

Proof. If |]|w0|||<1 ocﬁ—El—)sz, [l ]||=e>0 (i=1,2,---,n), then
Hl— olll<~» IH——w ll=1 (i=1,2,---,m). Since m(a@®b)=m(a)+m(b)
and IHlegl 1mp11es m(x)=1, it follows m(iwo) 2m< 1 )gn. As

\ ¢
m is uniformly finite, we obtain
1\ _ 1.\
s o) = gupm{ w)=Kes o

which yields K.,>n. Thus the modular norm is finitely monotone.
Suppose that R has no atomic element. Since m(x)>N implies a

N
partition such that x=@ X x,, m(x,)=>1 (¢=1,2,---, N) in this case,
i=1
we obtain obviously
Theorem 2.2. Suppose that R has mo atomic element. If the
modular nmorm by m is finitely monotone, then m is uniformly finite.
The “ conjugate ” of “ uniformly finite” is “ uniformly increasing ”,
i.e. lim inf '@(g“)-_- oo (cf. [4, §48]). Therefore we have by Theorems

E>00 m(@)>1

1.4 and 2.1

Theorem 2.3. If a modular m is uniformly increasing, then the
modular norm is finitely flat.

The property called “ finitely monotone” (finitely flat) is a topo-
logical one, that is, we have to note

Remark. If a norm is finitely monotone (finitely flat), then the
every norm which is equivalent to it is also finitely monotone (finitely
fat).

This fact can be verified easily by the definitions.

Now we can state

Theorem 2.4. Suppose that R has mo atomic element. If the
modular norm by a modular m is finitely flat, then m is uniformly
imereasing.,
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Proof. Since the first norm by m and the modular norm are
mutually equivalent, it follows from the above remark that the former
is also finitely flat. Since the modular norm by the conjugate modular
m of m is the conjugate norm of the first norm by m [4, §40], the
modular norm |||Z||| by m is finitely monotone by Theorem 1.5, and
the conjugate modular 7 is uniformly finite by Theorem 2.2. As the
“conjugate” of “wumiformly finite” is “uniformly increasing”, we
obtain Theorem 2.4.

88. First we shall prove

Theorem 3.1. Let R be a mon-atomic umiversally continuous
semi-ordered linear space, with a mnorm satisfying the following con-
ditions:

1) |lz]| is continuous;

2) |l#|| s mot finitely monotone;

8) |lx|| s monotone complete.”

Then there can not be defined modular on R in any way, whose conver-
gence coimcides with that of || x||.

Proof. Suppose that such a modular m* is defined on R, then we
can define the modular norm |||z|||]* by m*. It is obvious that the
modular m* is also monotone complete, and [||z][[|* and |[z[| are
mutually equivalent (cf. [4, §30]). This implies that |||« ||[* is con-
tinuous and the modular m* is finite, since R has no atomic element.
Finiteness and monotone completeness of m* yield that m* is uniformly
finite (cf. [1]). Then we see that |||« |||* is finitely monotone, as showed
above. This implies that |[«|| is also finitely monotone, which yields a
contradiction. Thus the proof is established.

Now we shall show that there exists truly the space which
satisfies the conditions of Theorem 8.1. For this purpose we construct
a Kothe space X; on [0,1] (cef. [2]) in the following.

In the sequel e denotes a measurable set in [0,1] and d(e) does
the Lebesgue measure of e. We split [0,1] into e, (1=1,2,--+; j=
1,2,---,2% such that

€1 =€1,1 €15 e =¢ (157,
O3 =€3,1~ 3,0 €33 Oy, i, j— (k:\:J)

de) = dles )=

: (1=1,2,--+; 7=1,2,--., 20).

For convenience, ¢, , denotes null set ¢ for every n>1. We let 2 denote

a sequence of measurable sets: 1={e, ; .} (0=7,(2)<2"), and define that

2=2" means j,(1)=7,(1) for every n=>1. Let A be the set of such A
4) A norm on R is said to be monotone complete if 0<a; T , supl]a;]] < oo

implies the existence of U a;\

e =en lven PAR ven oMy
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Now for every ie A, we define a measurable function c,(t) as follows:
2, if tee, ;0 such that j7,(2)=0;
ex(t) { 0, if tee,—e,, such that j,(2)==0;
1, if tee, such that 3,(2)=0.

Let C be a least convex semi-normal order-closed set including
¢(t) (AeA). Then we can see that C satisfies the conditions of
Kothe space that has been given in [2], that is,

1) if ceCand O<cl(t)<c(t), then ¢,(t) € C, that is, C is semi-normal;

2) if ¢,;¢C, 0=, <1, Za_l then Zaic(t)eC’

3) if ¢,eC and c(t)’rc(t) then ceC;
4) 1eC, where 1(¢)=1 a.e. on [0,17;

5 [ ‘ot)ydt<1, ceC.
[1]

Here we consider the Kothe space X,[0,1], i.e. the set of the

real valued measurable functions x(¢) for which || () Xll—sup f | 2(t)|
c(t)dt< oo.
By the definitions of || 2(t) ||y and of C, we can see that

[l2@®)||x= sup f lLI a(t) | ex(t)dt.

It may be easily seen that this Kothe space is a non-atomic
universally continuous semi-ordered space and the norm |[|z(%)||x is
monotone complete. In order to see that [|x(f)||x is continuous, it is
sufficient to prove the following fact: for any x(t)e X, [0,1] and >0
there exists an integer m, such that ||x(t)-x . " ei(t)llgs (x.(t) means

g=1

the characteristic function of e). This fact can be ascertained without
difficulty. On the other hand, ||«(¢)||x is not a finitely monotone norm.
For instance, put
2" on e
,(t :{ o
® otherwise (n=1,2,:-).
Then we obtain ||,(¢) || X_l (n=1,2,---). But z,(t) can be repre-

sented as the forms: x,=@® Z %, where x, (t)=x., , (¢) and || 2,,®) [lx

=1 (n=1,2,--.).

Thus this is the space which satisfies the conditions of Theorem
3.1. By virtue of Theorem 3.1 we see that we can define no monotone
complete modular on this space.
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