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Fourier Series. XVII. Order of Partial Sums
and Convergence Theorem

By Masako SAT(3

(Comm. by Z. SUETUNA, M.J.A.., June 12, 1957)

1. Introduction. Let f(t) be an integrable function with period
2r and its Fourier series be

1 a0+ (a cos nt+b sin nt).

By s(x)we denote the nth partial sum of the Fourier series (1).
We put as usual o(t)-f(x+t) +f(x- t).

We have proved the following theorems in [1.
Theorem 1. If

( 2 ) ox(u) du--o(t) (t -> O)

and

3 (f($+u)--f($--u)) du--o(t) (t -->0)

uniformly in in a neighbourhood of x, then
sn(x) o (log n).

Theorem 2. If
4 o(u) du

and

(5) ft(f($+u)_f($_u)) du_o(t log log_lt_/log_) (t O)

uniformly in $ in a neighbourhood of x, then
sn(x) o (log log n).

By the same way as the proof of these theorems, we get the
following generalizations.

Theorem 3. Let Ocl. If
1

and

(7) o {_)
uniformly in $ in a neighbourhood of x, then
s s(x)- o (Oog n)).

Theorem 4. Let O a l. If



No. 6] Fourier Series. XVII 299

/
9 ox(u du- (logo(,. o)

and

(xo) 1 ) /log 1

uniformly in $ in a neighbourhood of x, then
(1) s(x) o ((log log n)).

In the case a--l, the conditions (6) and (9) in Theorems 3 and 4
are more general than (2) and (4) in Theorems 1 and 2, respectively.
The case a-0 becomes a convergence theorem proved in

In 2 we prove Theorem 3; since Theorem 4 may be quite similarly
proved we shall omit its proo2.

We can generalize the last two theorems into the following form.
Theorem 5. Let Oal. If

(la) 5ft(t--u)(f($+u)--f(-u)) du-o(t/(log)-") (tO)

uniformly in $ in a neighbourhood of x, then (8) holds.

Theorem 6. Let Oal. If
(14) l f(t-U)x(u)du-o(t(loa log)-)) (t0)

t

and
1 )/1og)(t0)(15) f(t-u)(f($+u)-f($-u))du-o(t(loaloa--

uniformly in $ in a neighbourhood of x, then (11) holds.
The left side terms of (12)-(15) are the (C, 1) mean of those of

(6), (7), (9), (10), respectively.
In 3 we prove Theorem 5. Theorem 6 may be proved similarly

to Theorem 5, so that its proof will be left for readers.
As an application of Theorems 5 and 6, we get the following

theorems.
Theorem 7. If the condition (13) holds, then

(16) + an cos nx+b, sin nx

at the Lebesgue point x.
Theorem 8. If the condition (15) holds, then

(17) .a0+ an cos nx+bn sin nx f(x) (z O)
2 ,= 1 +e (log log n)

at the Lebesgue point x.
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The summability of the type (16) (a=l) was first introduced
by R. Salem _3J (cf. [4). The general case is considered by M.
Kinukawa.*) Proof of these theorems follows from Theorem 5 and
Theorem 6 and the method used by S. Izumi and T. Kawata [4J (cf.
[5), so that we shall omit it.

2o Proof of Theorem 3. We shall sketch the proof of Theorem 3.
We write

s(x) -1-- o(t)sin--ntdt +o(1)
rr t

:lr If1+f! +o(1)- 1--I+rJ- +o(1).
[n

Let (t)-- ()d, then integrating by arts and using the eon-

dition (6) we get

o ((log n)=).
We write as in 1

J=J+&+oO),
where _

p(t+2k/)-(t+(2k-1)/) sintgt,
= t+2k/n

E()/] ln

= i+2@/n---t4-(2kfl)#/n-nt dt.

Then by the second mean value theorem, for

=, 2ic@- {,(t+2k/n)--(t+(2k--1)/n)}dt
k

o = -(i0
-o (Oog,

using the condition (7).
On the other hand by Abel’s lemma we write

((t+(2k-- 1)/n)--(t+(2k-- 3)/n)) sin nt dt

+ 1 1

= t+ (2j 1)/n
(t+/n) sin nt dt

=&,+&:,
then by the second mean value theorem and condition (7) we have,
for 0<$;/n,

His result is not published.
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j._
r ( -3 +(2k--1)r/n)--cp(t+(2k--3)r/n)}dt
n ,-- (2j )

k

o n 1 --o ((log n)),
k (logn)-and by the seeond mean value theorem and condition (6) we have,

or 0 <} /n,

j=l

o (Oog
Collecting above estimations we get the required.

3. Proof of Theorem S. We have by integration by parts
1 sin nt8n(g) (t) -dt+o()J t

1 __f(t) cost gt+f(t)singt.
=[-z+j +o().

In order to estimate /, we divide it such that

IfI=n + (t) c_os nt dt I+ I..
t

ln
Integrating by parts and using the condition (12) we get

cos nt dt

[*ln

(t) COS tcosnt’"+nj [nsinnt dtn(t)-h--z0 t ---o (0og n)’),
where O(t)-- ()d.

On the ogher hand we write, N=(-1)/2,

I n (t)C9_n}dt n (t CPS__nt dt

=(->’j (t+/)-ot et
= t+k/n

t+2k/n t+ (2k )/n
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-7-n (t+(2k--1)r/n)( _1_ 1 cosntdt+o(1)
\t+2kr/n t+(2k--1)r/n

=:+L..+o().
Now we have

/
___._r.n

=n-2s+ f:{ (t+2kr/n)--(t+(2k--1)r/n)t/2kr/n
x((2k+1)/n--t)--(2k/n--t) }cos nt dt

(2k+l)/n--t
N

n {(t+2k/n)--(t+ (2k-- 1)/n)

P((2k+ 1)r/n--t)+(P(2Mr/n--t)} cos nt dt
t+2kr/n

+n= {:((2k+ l)r/n-t)--:(2tcr/n-t)}

2/n+t (2k+1)/n-- t

I+I.
Concerning I we get, for 0</,

I--n V 2in-t
dt (u) du-- (u) du

(2k--1)ln+t 2kln--t

n 2k x(u) du-- (u)

_. (/-)-(/+)

-2J=
t (/-)-(/+)

12n

(o =-N(1o)- -o ((lo )),

by the condition (13). On the other hand

{ 1 1 }= =
cosn

{((2k+1)/n--t)--(2k/n--t)--((2k--1)/n--t)
+((2k--2)/n--t)] dt

1 1 },: j-nt {@(3ln--t)--@(2in--t)}
(2j+l)ln--t

cos nt dt
I+I,.

Since (2j/n+t)---((2j+l)/n--t)- is positive and decreasing, and
its maximum value is n/2j(2j+l) for Ot/2n. Hence, for
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by the condition (13). Similarly, for O$<’/2n,

[x(3-In--t)--(P(2-In--t)} dt

by the condition (12). Collecting above estimations, we get I=o((logn)).
On the other hand we set

j=if/ sinnt+f=]x(t)---t dt-J,+J:,

then

x(t) sin nt

o (Oog ))+o()+o j o o

and

J-- f+/"-/"(t) sin nt
--t dt

cos nt dtw(-1)(t+(k-1/2)r/n)
(t+(k_l/2)r/n).k=l

-, f,o(t+(le)!)_ (t+(2-1)1)}_-_1 o [ (t+(2k--1/2)’/n) -i-(2k]2)r/n)
cos nt dt+o(1).

The estimation of the 14st sum runs similarly as I:, so that we shall
omit it. Thus we have proved the theorem completely.

Finally the author expresses her hearty thanks to Mr. M. Kinu-
kawa who showed her his unpublished paper proving-that (8)and (11)
hold almost everywhere under the condition (7) for 0<a<l. Above
method of proof is quite different rom his.
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