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75. Fourier Series. XVII. Order of Partial Sums
and Convergence Theorem

By Masako SATO
(Comm. by Z. SUETUNA, M.J.A., June 12, 1957)

1. Introduction. Let f(¢) be an integrable function with period
27 and its Fourier series be

(1) f‘zb—°+ i (a, cos nt+b, sin nt).
n=1

By s,(x) we denote the nth partial sum of the Fourier series (1).
We put as usual ¢ (t)=f(x+t)+ f(x—1).

We have proved the following theorems in [1].

Theorem 1. If

(2) [owau=ot) >0
and o
(3) [(FErn—fE—wdu=o®) (¢->0)

untformly in & in a neighbourhood of x, then
s,(x) = o (log n).
Theorem 2. If

(4) f chx(u)du=o(t/log——1~> (t—0)
and '
(5) f (FE+u)—FE—w) du:o(t log log%- log 1) (t—0)

uniformly in & in a meighbourhood of x, then
s,(x) = o (log log n).

By the same way as the proof of these theorems, we get the
following generalizations.

Theorem 3. Let 0<a<l. If
(6) f () du=o<t(1og.1.)“> (t—0)

, t

and

(7) f (FE+w)—F(E—w) du=o ¢t/ (log })) (t>0)

untformly in & in a neighbourhood of w, then
(8) 8,(%) = o ((log n)*).
Theorem 4. Let 0<a=<1l. If
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(9) ftgax(u) du=o(t<log 10g-1—>a> t—0)
and '
(10) f (FE+u)—FE—u) du:o(t(log log %) / log%> (t—0)

untformly in § in a meighbourhood of w, then
11) s, (x) = o ((log log n)%).

In the case a=1, the conditions (6) and (9) in Theorems 3 and 4
are more general than (2) and (4) in Theorems 1 and 2, respectively.
The case a=0 becomes a convergence theorem proved in [2].

In §2 we prove Theorem 3; since Theorem 4 may be quite similarly
proved we shall omit its proof.

We can generalize the last two theorems into the following form.

Theorem 5. Let 0<a<1. If

(12) _1_ Of ‘= w)p,(w) du:o(t(log %)) (t—0)
and
(13) % Of = w)(fE+u)— F(E—w) du:o(t / <log %>l> (t—0)

untformly in & im a meighbourhood of x, then (8) holds.
Theorem 6. Let 0<a<1l. If

(14) 1 Of (t— ), (w) du:o(t(log log—}>a> (t—0)
and
(15) % f (t—w)(fE+u)— FE—w) du:o(t(log 1og..1_)“/10g %) (t->0)

untformly in & in a meighbourhood of w, then (11) holds.

The left side terms of (12)-(15) are the (C,1) mean of those of
(6), (7), (9), (10), respectively.

In §3 we prove Theorem 5. Theorem 6 may be proved similarly
to Theorem 5, so that its proof will be left for readers.

As an application of Theorems 5 and 6, we get the following
theorems.

Theorem 7. If the condition (13) holds, then
16 A @, cosmatb, sinne oo 0
(16) 2+n2=1 1+4¢ (log n)* >f@ (=0
at the Lebesgue point x.

Theorem 8. If the condition (15) holds, then
17 @ S a, cos nx+b, sin nx . 0
(an 2 +n2=1 1+¢(log log n)* > @ (>0
at the Lebesgue point x.
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The summability of the type (16) («=1) was first introduced
by R. Salem [38] (cf. [4]). The general case is considered by M.
Kinukawa.®*> Proof of these theorems follows from Theorem 5 and
Theorem 6 and the method used by S.Izumi and T. Kawata [4] (cf.
[6]), so that we shall omit it.

2. Proof of Theorem 3. We shall sketch the proof of Theorem 3.
We write

s@)=1 [p.® ™ ™ at+o)

=_71:[0f +f:|+o(1)———|:I+J]+0(1)
w[n

Let @,(t)= f ‘gux(u) du, then integrating by parts and using the con-
0

dition (6) we get
|I|<f I(Px(t)||smm K‘Z"?’"t‘dt o< f <logw>dt>

0
= o ((log n)*).
We write as in [1]
J=J;+J,+0(1),
where

(G (71 g (¢4 2hm /) — .t -+ (2= 1)m/n)
=1 t+2km/n

[(n=D)/2] 1 1
S= 2 Of (04 (2k— 1)W/n)( tr2kmin  t+(2k—1)m/n

Then by the second mean value theorem, for 0=y, <&, <m/n,
[(n—

J="5" f {(pu(t-+2lom/m) — o, ¢+ (2 — 1))} dt

k=

= sin nt dt,

)sm nt dt.

- v 1 1 o
_o< mzi % (log n)- u) o ((log m)*),

using the condition (7).
On the other hand by Abel’s lemma we write

L O T S
= 2 f f=k<‘t+2jw/n t+(2j—1>w/n)
(p(t+ @2k —1)m/n)— o (t+(2k—38)m/n)) sin nt dt

Wlnn
,,,,,,,,,,, " . ’
+f <t+2.77r/n t+(25—1) /%>%( +r/n) sin nt d

= 21'|‘J 227
then by the second mean value theorem and condition (7) we have,
for 0<gi<§.<m/n,

*) His result is not publishéd.
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o [=0)/2] 7

Joy=—
"Ta = S@— 1)22

(35 i ;@‘(ia‘g“lu)f—'a‘): o Sy ’(55%@‘)"0 ((log m)"),

and by the second mean value theorem and condition (6) we have,
for 0 << & < m/n,

f (ot + @k —1)m/n) — ¢+ (2k—B)m/n)} dt

n

T 1 (log »)*
T=T 3 i 1)2 > f po(ttmim) di=o(n 3y 1 (OB T)
=0 (log ).

Collecting above estimations we get the required.
3. Proof of Theorem 5. We have by integration by parts

s@=1 [(p.0 " ™ dt-+o()

0

[ f ?,(t) cos nt dt+f ?.(t) smﬁ’nt dt:l—i—o(l)

=—7T—[—I+J]+o(1).

In order to estimate I, we divide it such that

I=n] / " / “Jo.) o8 " Gt =T, I,.

0 T [n

Integrating by parts and using the condition (12) we get
L=n [ 0.0 "™ at

0

— [fn(p;(t) Q‘EﬁtJ + f DX(t) [ZLS_IME_;_ cos. ﬂ}dt

=o<[nt<log%> ]:m>+o<n3 Of t2<log >dt—|—n Of <log—1—) dt)

=0 ((log n)*),
where @¥(t)= f ‘@, () du.

0
On the other hand we write, N=[(n—1)/2],

L=nf" coz(t)"f’ff?'?dt w3 [ e ar
m:/n km[n
— — k t 499§nt
_ & e E_(L-tz_kir_/n) ¢z(t+(2k -1)m/n) tdt
”Zf = ey foon m deo(t)
& [ D2k m) — B, (t+ 2k —1)m/m)
nkgl [ T cos nt dt
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1
t4 2kmin  t+(2k—1)m/n

+n3) f 0,+@k—Dmm(, ]

= 21+I22+0(1)'

Now we have
lam ™ @ (t+ 2k /n)— @, (t+ (2k—1)m/n) d

Igl_nkg [f +;£” Ty cos nt dt
wdy [ O 2emin) 0.0 L))

= t+2km/n

D ((2k+1)m/n—1t)— @, (2km/n—1) }cos nt dt

@Ck+1)m/n—t

—n f "D+ 2o /1) — D (- (2 — L))

0

)cos nt dt+o(1)

=
-

0

—0,((@k+1ym/n—)+ 0. (2km/n—1)} cgsicﬂ/;dt

+nkﬁ f "D (@ 1)y —t)— D (e m—1)}

{ 1 — 1 }cos nt dt
2kmin+t  (2k+1)m/n—t

= Iy;+ Iyss.
Concerning I, we get, for 0§, <m/2n,
—n Z /20 cos nt dt{ 257 [N+t (u) du Qk+1)7[n—t (u) du}
L,= & 2kw/n+t f P f P

Qrk—-1)7/n+t 2k [n—t
N (2k+1)7c[n—t

=n33 " f ol [T g du— [ .(0) du}

k=
Q@k— l)av:/'n+t 2kT [N+t

s l'ékar" f e’ f [ (@l /n— ) — (2o /m+u)]du

RS ,H "’"‘E"_ e ‘ ) —
=25 kL f Jdt Of [ (2l /n— 1) — p (2 +1u)] du

13
=o(n* 311 = gzaog n)*~)=o ((log n°),

by the condition (138). On the other hand
7 [2n n 1 1
1012-—%2 f {ZJW/n+t (2.7—1—1);/1{—7}008 nt
{(Dx((zk—l-l)vr/n—t) @, 2km|n—1t)— & (2k—1)m/n—t)
+@,((2k—2)m[n—t)}dt
1

7|2 n
+n f {297r/n+t @i+ 1)m/n— t}{dh(sw/n t)—@,(2m/n—1t)}
cos nt dt

= Loyo1+ Lpys0.
Since (2jm/n+t)'—((2j+1)m/n—t)~' is positive and decreasing, and
its maximum value is #*25(25+1)m* for 0<t<m/2n. Hence, for
0=§&.<m,=m/2n,
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,nz N n 1 m[n—t 1t — -
=" 33 0 +1)) f it [T @hmin—1) =g -]

—of prsh 1 (log m)*~* "
_o<n SRS ) o ((log my?),
by the condition (13). Similarly, for 0<§,<m/2n,

nz n 1 |2 N - _
— 12129(294-1) {0,887 /n—t)— @, (2m/n—t)}dt

ofs [ i) g

27 [n—t
by the condition (12) Collecting above estimations, we get I=o((log n)%).
On the other hand we set

Jz[f +f} x(t)smmdt T+,

T[2n

2198 =

then
i sin nt
Ji= @)= dt
J =
" s1_n nt (2 8innt _ mcos nt
<[] " [ oo e
{2 1
=0 ((log n)*)4+0(1)+o( n log dt )= o ((log n)*)
( [ (st
and
n—-1 (k+1)7T/Mm—7/2n
J=3 2.0%" "
L=llm/n<7c/2n
n—1
- — 1)@ (t+ (b —1/2 cos né
f (D@t Go=12min) (s
n—1

5 (@ (t+2k—1/2)m/n) _ @, (t+(2k— 3/2)'”/%)}
=2/ { @12y (e @o—32ymmye JoOS ™ A
The estimation of the last sum runs similarly as I,, so that we shall
omit it. Thus we have proved the theorem completely.

Finally the author expresses her hearty thanks to Mr. M. Kinu-
kawa who showed her his unpublished paper proving that (8) and (11)
hold almost everywhere under the condition (7) for 0<a<1. Above
method of proof is quite different from his.
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