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1. There are many literatures concerning the Gibbs phenomenon
of partial sums and Cesro means of Fourier series of functions at
jump points but a few concerning that at the points of discontinuity
of the second kind (see B. Kuttner [1-4, 0. Szsz [5, S. Izumi
and M. Sat5 [_6 and K. Ishiguro [7, 8). In our paper [6_ we have
proved

Theorem 1. Suppose that
f(t)--a@(t--$)+g(t)

where @(t) is a periodic function with period 2r such that

(t) (rr-- t)/2 (0 < t< 2r)
--arr/2 lim inf f(t) lim sup f(t) ar/2.

t-> t-

and

fg($+u)du-o(ltl),

(g(x+u) g(x--u))du-o(ltl)

uniformly for all x in a neighbourhood of , then the Gibbs phenome-
non of f(t) appears at t-$, and the Gibbs set contains the interval
--a(U+ 1)r/4, a(H+ 1)r/4.

Theorem 2. There is a function which does not present the Gibbs
phenomenon at t-$ and has t-$ as the second kind discontinuity.

We shall here prove
Theorem 3. If

_1 ), uniformly inx,(1) f (f(x+u)-f(x-u))du=o(h/log
then the partial sums of Fourier series of f(t) do not present the Gibbs
phenomenon at all points.

Using Theorem 3, we give a simple proof of Theorem 2. Further,
as a particular case, we get the following theorem.

Theorem 4. If f(t) is continuous at a point x (or in an interval
(a,) or in (0, 2r)), and (1) holds, then the Fourier series of f(t)
converges uniformly at x (or in a closed interval contained in (, fl)
or in (0, 2r)).
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This is a theorem of R. Salem 9 (the interval case) and one of
us [_10 (the point case), and proof of Theorem 3 gives a simple proof
of Theorem 4.

Concerning Cesro means

a(x, f) _1 f(x+t)K(t) dt, K(t)
(2)

r--1A,_Dk(t)/A,

we prove
Theorem 5. If

( 3 ) (f(x+u)--f(x--u))du--o(h), uniformly in x,

then Cesro means of Fourier series of f(t) of positive order do not
present the Gibbs phenomenon at t-O.

From this we get the following theorem due to K. Ishiguro [8"
Theorem 6. If f(t) =a(t) +g(t)

where a is a constant and g(t) satisfies the condition (3)in Theorem 5

and further
lim sup f(t) ar/2, lim inf f(t) --ar/2

t-O

then the Cesro means a(x, f)of the Fourier series of f(t) present
the Gibbs phenomenon at t-O for r< ro and not for r r0, ro being
the Cramdr constant.

Theorem 7. There is a function f(t) such that the partial sums
sn(x, f) present the Gibbs phenomenon, but not the Ces(ro means a(x, f)
for any positive order r.

On the other hand, B. Kuttner [1] has proved
Theorem 8. For any r (0<r<l), there is a function f(t) such

that Cesro means a(x, f) present the Gibbs phenomenon.
His example is an unbounded function. We prove
Theorem 9. There is a bounded function f(t) such that the Cesro

means a(x, f) present the Gibbs phenomenon for any r, 0r<l, at
a point x--O.

2. Proof of Theorem 3. We shall use the notations in [11.
Let s(x, f) be the nth partial sum of Fourier series of f(t) and let

o(t) f(x-t) +f(x t).
Then

s (x, f sin nt_dt+o(1)
r t

where the term o(1) tends to zero uniformly as n->. After R. Salem
(cf. [10) we write. (_1) q(t+ sin nt dt+o(1)

t+kr/n
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opt(t+ (2k+ 1)r/n).1 sin nt dt+o(1)
t+ (2k+ l)r/n

cp,(t+2kr/n) 1 1
r =o t+2kr/n -t-2-(2/+1)

sin nt dt

+ !_. + 1)r/n) sin nt dt +o(1)
r =o t+ (2k/ 1)r/n

=I+J+o(1).
In order to prove the theorem it is sufficient to prove that
lim inf f(x) 0 implies

4 lim inf s(x, f) O.

We can suppose f(x)>__. 0 by the local property of the partial sums.
Then I0 and hence i is sufficient to prove that J=o(1). *) By the
second mean value theorem, for O<rr/n,

r =0 (2k+l)
[9,(t+2k/n)--9,(t+(2k+l)/n)dt

=o 1 -o(1).= log

For, if we write

J’ f[_c,o,(t+2kr/n) cp(t+(2k+l)r/n)dt

[f(x+t+2kr/n)--f(x+t+(2k+l)r/n)?dt

=?+,
then

J’- f(x+2kr/n+t)--f(x+2kr/n--t)dt

[f(x+(2k+l)r/n+t)--f(x+2kr/n-t)dt.

---t-;- ---;’l[f(x+2kr/n+t)- f(x+2kr/n-t)dt

where each integral is of order o(1/n log n) by the condition (1), uni-
formly in k_<___n. Accordingly J:--o(1/n log n), and similarly
J=’-o(1/n log n); and hence J’-o(1/n log n) uniformly in kn.

3. Proof of Theorem 2. It is sufficient to prove that there is

Proof of d=o(1) is the same as in [10].
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a function satisfying the condition (1) and having a point of dis-
continuity of the second kind.

We can take an even function f(x) such that

f(0)= 1, f(x) > 0 (0___<x< b), f(x)=0 (x>=b)
and

(f(x+u)--f(x--u)) du t/(log l
t

for all t and x. For, if we take f(x) such that the graph of f(x)
is concave in the interval (0, b) and touches x-axis at x-b and y-axis
at y-1 and the integral of f(x) on the interval (0, t) (0< t <b) minus
try(t) is less than 1/2t(log 1/t)’, then the condition (5) is satisfied.

Let (a) and (b) be sequences rapidly tending to zero such that

a/ a/4, 4b.< a, a/ -}- 2b a 2b,
and let

Then

f(x)- {f(x-}-a-}-b)--f(x+a-b)}.

as t->O,

uniformly in x; and hence f(x) has x-0 as a point of discontinuity
of the second kind and the Gibbs phenomenon does not appear at
x-0 by Theorem 3.

4. Proof of Theorem 5. Without any loss of generality we
can suppose f(0)-0. As is well known 11, p. 184,

where

say.

a(x, f)- 1 ox(t)Kg(t) dt

K(t) sin [(n-}- (r- 1)/2)t--rr/2 +___r_ 1
A(2 sin t/2)/ n+1 (2 sin t/2)
1 cos (,-n)t
=+ (2 sin t/2)

L[)(t)+L[:)(t) +L[)(t),
Putting N:n+(r+l)/2 and :(2-r/2)/N,

KZ(*)d*-- I+ d.

We have I_>0. Let

J-fpx(t)L()(t) dt 4-fp(t)L()(t) dt --fp(t)L((t)dt

then
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sin (Nt--rr/2) dtJ-- o(t)
A(2 sin t/2)

1 f _[(t) sin (Nt-- rr/2)dt +o(1)
A

A : (t+2k/N)-J-- (t+(2k+l)/N)+

(t+2k/N) sin (Nt--r/2) dt

-1 (t+2k/N)--(t+(2k+l)/N)

sin (Nt--r/2) dt +o(1)

It is sufficient to prove that f(t)O implies 6(x, f)o(1) where
o(1) is the term tending to zero as n. Evidently J0. By
the second mean value theorem

< ((t+2/N)-(t+(2k+l)/N))gt

where ae<vaE/N. By the condition (3), the right is o(1),
and then J o(1). We have also J: 0. It remains to prove that
Js o(1). Now we put

1 A_f" (t) cos (,--n)t dt
4A =+ (2 sin t/2)

for an n0. For a large but fixed n0, Jo(1) and J:-o(1) by the
condition (3), using the estimation as in J. Thus the theorem is
proved.
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