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109. On Imbedding a Metric Space in a Product of
One.dimensional Spaces

By Jun-iti NAGATA
Department of Mathematics, Osaka City University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

It is well known that every separable metric space can be imbedded
in Hilbert cube I. Recently K. Morita has proved that a regular
space having a-star-finite basis can be imbedded in the topological
product N(2) I of a generalized Baire’s zero-dimensional space N()
and I." On the other hand the author has shown that every n-
dimensional metric space can be imbedded in a product of n+ 1 one-
dimensional spaces. However, it seems that there is little study on
imbedding general metric spaces in a product of one-dimensional
spaces. The purpose of this note is to show that every metric space
can be imbedded in a product of countably many one-dimensional
spaces.

In this note we concern ourselves only with metric spaces and
mean by a covering an "open" covering.

Lemma 1. For every covering t of a metric space R there exist
collections 1I (i-1,2,...) of open sets and a covering such that

lIl[ and such that each S(p, ) (peR) intersects at most one
i=l

set of 1t for a fixed i and finitely many sets of
i--

Proof. As it was shown, for every fully normal space, by A. H.
Stone,) there exist open collections lt (i-1,2,...) and a covering

such that < lI< and such that each set of intersects at most
i--l

one set of t and finitely many sets of 1. If we take a covering

satisfying 3 <, then all the conditions of this lemma are satisfied.
Lemma 2. For every coverings (i--1,2,...) with order 32

and satisfying A , there exist locally finite coverings

(i- 1,2,. .) such that *., order N 2 (i--1,2,. .) and such that

there exists a covering 3 satisfying A.
1) The proof of this theorem is unpublished. Cf. K. Morita: Normal families

and dimension theory for metric spaces, Math. Ann., 128 (1954). Cf. also J. Nagata:
On imbedding theorem for non-separable metric spaces, Jour. Inst. Polytech. Osaka
City Univ., 8, no. 1 (1957).

2) Note on dimension theory, Proc. Japan Acad., 32, no. 8 (1956).
3) A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc.,

54, no. 10 (1948).
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Proof. Let lI*<< A , --{P,IeD}, then we define cover-

ings (i=1,2,...) by

First, we notice that it*</ implies lI<:/. Since each set of 1

intersects, from order 2, at most two sets of 2, is a locally
finite covering with order 2.

Taking W satisfying ([’)< lI, we define coverings (i- 1,2,. .)
by

To prove It’< A we consider an arbitrary U’ elI’ and . Let

U’ M, . In the case that U’ M,, for every ’ with =’ e D,
we have U’{M,,i’ e D}. For if U’{M,,I e D},
then U’ intersects at least two of M,, (’ ), which contradicts the
fact that every set of [[ intersects at most two sets of 9. There-

fore U’ L6,. To show U’L,,-- for every 8’ 8, we assume the

contrary, i.e. U’L,, , ’ . Then there exists U" e 1I’ such that
U’ U" b, U" M6,. Hence it follows from U’ M,,(’ ) that
U’U"=M6, for every eD, which contradicts (1I’)<. Thus we

have U’L,,= (’ ) and consequently U’ Q, e.
In the case that U’ M,,, t, we have U’M M,, e.

In consequence we conclude lI’</ .
i=l

Since Q,Q,,= (’) is obvious from the definition of Q6,,
it follows from order 2 2 that order 2. If Q,(M,-.M,),
then S(M6,,W)(M,M,), and hence =a or -. For
example, let --, then Q,(M,M,)--Q,( (M, M,) S(M,,
II’)P,. Since Q6,P6, and M,M, are obvious, we have
The local finiteness of is obvious by the above discussion.

Repeating such a process we get locally finite coverings (i-
1,2,...) such that <, order 2 and such that there exists a

covering satisfying </. Since *< is clear, these satisfy

the conditions of this lemma.
Lemma 3. Let > . be a sequence of coverings

of a metric space R such that {S(p,(R)) lm-l,2,...} is a nbd (-
neighborhood) basis of each point p of R. Then there exist countably
many sequences
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1,>,>.,t>> (i=1,2,...)
of coverings such that order ,2 (m, i--1,2,...), for every m and
every point p of R there exists , satisfying S(p, ,) S(p, )
and such that for every m there exists a covering with < A,.

Proof. First, we choose, for $, open collections g, and a cover-

ing satisfying $> "’1I,,> and the other conditions of Lemma 1.

Let lt,--{U[aeA} for a fixed i, then we define a covering , by

,-{S( U, ), R-- U [a e A}.

Let us show that , satisfies the conditions of this lemma. Order
,2 is deduced from the fact that S(p, ) intersects at most one

set of ,. < A, is obvious. Since , covers R, we can take,
=1 1

for every point of R, i and A such that p U ,. If p S( U, ),
then we have, from <, ,< and <, S( U,, ) S(p, ).

This combining with p R- U implies S(p, ,) S(p, ).
Let us assume that we can define such , (i=1,2,...) for l m,

then we shall define +, (i- 1,2, .,. as follows. Since order , 2

and < A, for some covering , we can choose, by Lemma 2, locally
i=l

finite coverings (i--1,2,...) satisfying ,$ < ,, order 2 and

’< A for some covering ’. Moreover there exist, by Lemma 1,

open collections , (i-1,2,...) and a covering , such that < V

< for a covering with **<’< and such that each

S(p, ) intersects at most one set of and finitely many sets of. Let --{P,]B}, -{Nr, <r}, then we denote by =7()
the first ordinal 7 such that S(P,, ) Nr, e. Now we define cover-
ings +, (i- 1,2,. .) by

a)
First, +,<<<, is obvious from <<<**<. To
show order +,2, we take an arbitrary point p of R. If pC S
(P,, ) for every e B, then p is contained, by order 2, in at
most two of Kr,(7<r). If peS(P,, ), then it follows from the
relation of and that p S(P,, ) for every a with B a e B.
Since it follows from the definition of Kr, that p Kr, for every
7<r with 77(), P is contained in at most two sets of +,.
Therefore we have order +, 2.
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We notice that /, covers R. For if p S(P,, ) for every B,
p S(P,, ,) ( B) implies p e Kz, for 7 satisfying p e N,. 0n the

other hand p S(P,, ) implies p e Kr, for -(), proving
covers R.

Next there exists a covering such that < A+, . Denoting
i=1

by p an arbitrary point of R, we see that S(p, ) intersects a finite

number of S(P,, ) ( e B, i-1,2,...). We assume S(p, ) intersects
S(P,, ) (i=i,..., i) only. Then for ii,..., i we have, from
<, S(p,,)Kr, for some 7<r. Hence there exist an open nbd

U(p) of p and N e+, (i- 1,2,. .) satisfying U(p) N.
Last we take, for a given point p of R, i and eB such that

pe P,. Then it follows from ,<+2<*+<+ that S(p,
=S(P,,)S(p,+). Thus +, (i-1,2,...) satisfy all the
desired conditions.

Lemma 4. Every metric space has sequences

** ** (i--1,2, .), , 2, ,
of coverings such that S(p, +,) intersects at most two sets of ,
and such that {S(p, ,)m, i-1,2,...} is a nbd basis of p.

Proof. We can deduce this lemma directly from Lemma 3 as we
have shown in the previous paper.)

Theorem. Every metric space R can be topologically imbedded in
a product of an enumerable number of functional spaces R with
dim R 1 (i-- 1,2,...).

Proof. The proof of this theorem is analogous to the previous
l**one.) Let us sketch the outline of the proof. We denote by ,> ,

>1,>**, > (i-1,2, .) the sequences satisfying the conditions of
Lemma 4. Let ,-- U e A,}, V--S( U, li +, ) (a e A,), then we
can define continuous functions f,, (a e A, ) such that f,, ( V)--O,
f,,( U)-- 1/2- (a e A,), 0f,, 1/2- and such that y S(x,
implies ]f,,,,(x)-f,,(y)<A/2 for some definite number A and for
every m and a e A,. Considering a topological product P-H{I e A,,
m-l,2,... of I:{x 0 x 1/2-} (a e A,,), we define a mapping

F of R into P by
{f f m-- 1,2,...)} (x R).

Now we can show that R-F(R)(P)is a metrizable space
with dimF(R)l. Letting N--F(R){{p}p>O} (aeA,,), ,
=[NaeA,} we have a covering , of R--F(R). We can show
easily order 2, * < and that {S(p, ,) re=l,2,...} isre+l, ,l

a nbd basis of each point p of R. Hence we can conclude, from the

4) The proof of Theorem 2 of "Note on dimension theory" loc. cit.
5) The proof of Theorem 3 of "Note on dimension theory" loc. cit.
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previous theorem,6) the metrizability of R and dim R 1. As it is well

known, we can regard R as a functional space of functions of A,,
where the strong topology of R is clearly identical with the weak one.

Now we define a mapping F(x) of R into H Ri by F(x)--(Fl(x),
i=l

F2(x),’. ") (xeR). Then F(x) is, as easily seen, a homeomorphic map-
ping. Thus R is homeomorphic with the subspace F(R) of the product

space IIR of functional spaces Ri with dim R 1.
i-----1

6) Note on dimension theory, Theorem 2.


