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1. Let L be a complete lattice-ordered semigroup (cl-semigroup)
with a maximally integral identity ’ ¢, and suppose that L has a unique
mapping into itself a—a~' with two properties 1) aa 'a<a and 2)
ara<a implies x<a . In the previous paper [1], we obtained® that
L forms a commutative cl-group which is a direct product of imfinite
cyclic groups generated by prime elements, if L satisfies the following
conditions:

(1) The ascending chain condition (a.c.c.) holds for integral
elements of L.

(2) Any prime element is divisor-free (maximal).

(8) Any prime element contains an element ¢ satisfying e l=c.
Our purpose of the present note is to show that the condition (1) is
replaceable equivalently by the restricted descending chain condition
for integral elements of L.

2. Let L be a cl-semigroup with an identity e. If ¢ is maximally
integral, then, in order that L has a mapping into itself a—a-! with
above two properties 1) and 2), it is necessary and sufficient that L
forms a residuated lattice. In [1] we have proved® that the condi-
tion is necessary. We show that the condition is sufficient. Suppose
that L is a residuated latticee. Then (e:a),=(e:a),. For, let ax<e,
then xaxa<xza, (xa—e)<wa—e, and so ra—e=e, xza<e. Hence (e:a),
<(e:a),. Similarly (e:a),<(e:a),, We get therefore (e:a),=(e:a),. We
next prove that e=(a:a),=(a:a),. Since (a¢:a),a<a, we have (a:a)a<a,
(a:a)2<(a:a),. (a:a),>e is evident. Hence ¢e=(a:a),, similarly e=(a:a),
We now define a mapping a—a ' with a'=(e:a),=(e:a),. Then
aa'a=a-(e:a),a<ae=a, and axa<a implies ax<(a:a),=e, hence x<
(e:a),=a"%.

Lemma 1. Let a and b be two elements in L. If b covers a,
then (a:b), is a prime element. In particular, if b is integral, then
(a:b), is a prime element containing a. Similarly for (a:b),.

Proof. Suppose that bx<a. Then abr<a*<ab. Hence x<(ab:ab),

1) An element z is called 'L;Lv;gml_lf v?<lw. eis called mt;%i';mally integral if
e<c (c?<c) implies e=c.

2) Cf. [1, p. 14, Theorem 2.6].

3) Cf. [2, p. 201]. (a:b), will denote the left residual of a by b which is the

largest « satisfying bx<{a. Symmetrically for the right residual (a:d), of a by b.
4) Cf. [1, p. 12, Theorem 2.2].
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=e, i.e. (a:d), is integral. Let w and v be two integral elements such
that uv<(a:b), and w £(a:b),, Then buv<a and bua. Hence a<bu-—
a<bu~b=>b. This implies b=bu—a, and so bv=buv—av<a, v<(a:b),.
This shows that (a:b), is prime. Similarly (a:b), is prime. The other
part of this lemma is evident.

In the following we suppose that any prime is divisor-free.

Lemma 2. Let a be an integral element of L, and X a set of
elements x such that x°<a for a suitable whole number oc=o(x). If
the descending chain condition (d.c.c.) holds for the interval ela={y;
a<y<e}, then there exists a whole number p such that (sup X)*<a.

Proof. If the set X consists of the element a only, then our
assertion is trivial. We assume that X contains at least two elements.
Then evidently u=sup X >a. We find now that u is not an idempotent.
For, let u be an idempotent. Since eu>u’=u>a, we have (a:u), Xe.
Take an element m which covers (a:u),., Then p=((a:u),:m), is a
prime element, and so p is divisor-free. If e=wu—p, then e=(sup X)
vp=§161£ (x~~p). Hence there exists z,—p (x,€X) such that e=x,—p.

Since there exists a whole number ¢ such that x<a, we obtain e=
e’ =(x,—p)°= iU fpg;<p, a contradiction. Now, if u—p=1p, then u<p.
1 J

On the other hand, since mpu <a, we obtain mu=mu*<mpu<a. Hence
m<(a:u),. This is a contradiction. Repeating the above arguments
to the set Xu,” we obtain u*=(sup X)u=sup (Xu)>(sup (Xu))*=u".
Continuing in this way we have u>u*>u'>---, w<a.

Lemma 3. Let a be an integral element of L. If the d.c.c. holds
for the interval efa, them a contains a product of finite number of
primes.

Proof. Let X be the set of all elements x# such that 2°<a for
a suitable whole number ¢. Take an element ¢, which covers u=sup X.
Then p,=(u:c)),*e> and p, is a prime element. If ¢,<p,, then
d<pc,<u, ¢, € X, a contradiction. Hence ¢; £p,. If p,==u, then we
take an element ¢, such that ¢,<p, and ¢, covers u. Put p,=(u:c,),.
Then, since ¢, £p, and ¢,<p,;, the prime element p, (3-¢) is not equal
to p;. If p;~p,3u, then we take an element ¢, such that ¢,<p,~p,
and ¢; covers u. Put p,=(u:c;),, Then p, (3£e€) is not equal to p,
and p,. Continuing in this way, we obtain, after a finite number of
steps, p;~--+-~p,=u. Since there exists a whole number p such that
u*<a, we obtain

(D1 D < (Dr - D) =W <La.
This proves our assertion.
Lemma 4. Suppose that the restricted descending chain condition
5) If xola (xeX), then (zu)<a.
6) If p,=e, then c¢,=ec,=p,c,<<u, a contradiction.




No. 10] A Theorem on Residuated Lattices 641

(r.d.c.c.) holds for integral elements in L, and any prime contains an
element ¢ satisfying ¢ '=c. If both a and a~! are integral, then a=e.

Proof. Let a<e, a=e. Using Lemma 1, we can take a prime
element p such that a<p<e. Since e>a"'>p '>e '=e, it follows that
a'=pt=e. Let c=c ! be an element contained in p, and p,---p: a
product of finite number of primes which is contained in ¢. Suppose
now that 1 is minimal. Then A-:1. For, let 1=1, then p,<c<p,
pi=c=p. Hence ¢c'=p '=e, hence c=¢, and hence p=e, a contradic-
tion. Since p,- - -pr<c, there exists p, such that p,<p, p,=p. Putting
P=p, 0,1, @=D;, 1+ D Wwe havec 'P-pQ<c '¢c<e,and ¢ ' P<(pQ) .
On the other hand, since pQ(pQR) '<e, we have Q(pQ)'<p~'=e, and
(pQ)'<Q'. Hence c"*P<Q"'. This implies ¢ 'PQ<Q 'Q<e, PQ<e
=c, i.e. P+ Dy 1Dis1: - Pr<C, We have a contradiction to the minimality
of A

Theorem 1. Let L be a residuated lattice with a maximally inte-
gral identity e. Suppose that

(1)* The r.d.cc. holds for integral elements of L.

(2) Any prime element is devisor-free.

(8) Any prime element contains an element c such that ¢c™' =c.

Then L forms a commutative cl-group, which is a direct product
of infinite cyclic groups generated by prime elements.

Proof. aa '<e is evident. Since (az"')(aa"')"'<e, we have a™!
(aaY)"'<a™?, (@aa"*)"'<e. Hence aa'=e. L forms therefore a cl-group.
The other part of the theorem is easily obtained. Q.E.D.

It is easy to prove the converses of Theorems 1 and 2.6 [1].
Hence we obtain the following:

Theorem 2. Let L be a residuated lattice with a maximally inte-
gral identity. Suppose that any prime is divisor-free and contains
an element ¢ satisfying ¢ '"'=c. Then the following two conditions
are equivalent.

(1) The a.c.c. holds for integral elements of L.

(1)* The rd.cc. holds for integral elements of L.

By Theorem 4.5 in [17], we obtain

Theorem 3. Let o be a regular order in a semigroup. Suppose
that o is maximal and any closed prime ov-ideal s a maximal closed
two-sided v-ideal. Then the followings are equivalent:

(A) The a.cc. holds for closed integral v-ideals.

(B) The r.d.cc. holds for closed integral o-ideals.
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