152. A Theorem on Residuated Lattices

By Kentaro MURATA

Department of Mathematics, Yamaguchi University (Comm. by K. SHODA, M.J.A., Dec. 12, 1957)

- 1. Let L be a complete lattice-ordered semigroup (cl-semigroup) with a maximally integral identity $^{1)}$ e, and suppose that L has a unique mapping into itself $a \rightarrow a^{-1}$ with two properties 1) $aa^{-1}a \le a$ and 2) $axa \le a$ implies $x \le a^{-1}$. In the previous paper [1], we obtained $^{2)}$ that L forms a commutative cl-group which is a direct product of infinite cyclic groups generated by prime elements, if L satisfies the following conditions:
- (1) The ascending chain condition (a.c.c.) holds for integral elements of L.
 - (2) Any prime element is divisor-free (maximal).
- (3) Any prime element contains an element c satisfying $c^{-1}=c$. Our purpose of the present note is to show that the condition (1) is replaceable equivalently by the restricted descending chain condition for integral elements of L.
- 2. Let L be a cl-semigroup with an identity e. If e is maximally integral, then, in order that L has a mapping into itself $a \to a^{-1}$ with above two properties 1) and 2), it is necessary and sufficient that L forms a residuated lattice.³ In [1] we have proved ⁴ that the condition is necessary. We show that the condition is sufficient. Suppose that L is a residuated lattice. Then $(e:a)_l = (e:a)_r$. For, let $ax \le e$, then $xaxa \le xa$, $(xa \lor e)^2 \le xa \lor e$, and so $xa \lor e = e$, $xa \le e$. Hence $(e:a)_l \le (e:a)_r$. Similarly $(e:a)_r \le (e:a)_l$. We get therefore $(e:a)_l = (e:a)_r$. We next prove that $e = (a:a)_l = (a:a)_r$. Since $(a:a)_r a \le a$, we have $(a:a)_r^2 a \le a$, $(a:a)_r^2 \le (a:a)_r$. $(a:a)_r \ge e$ is evident. Hence $e = (a:a)_r$, similarly $e = (a:a)_l$. We now define a mapping $a \to a^{-1}$ with $a^{-1} = (e:a)_l = (e:a)_r$. Then $aa^{-1}a = a \cdot (e:a)_r a \le ae = a$, and $axa \le a$ implies $ax \le (a:a)_r = e$, hence $x \le (e:a)_l = a^{-1}$.

Lemma 1. Let a and b be two elements in L. If b covers a, then $(a:b)_t$ is a prime element. In particular, if b is integral, then $(a:b)_t$ is a prime element containing a. Similarly for $(a:b)_r$.

Proof. Suppose that $bx \le a$. Then $abx \le a^2 \le ab$. Hence $x \le (ab:ab)_t$

¹⁾ An element x is called *integral* if $x^2 \le x$. e is called *maximally integral* if $e \le c$ ($c^2 \le c$) implies e = c.

²⁾ Cf. [1, p. 14, Theorem 2.6].

³⁾ Cf. [2, p. 201]. $(a:b)_l$ will denote the left residual of a by b which is the largest x satisfying $bx \le a$. Symmetrically for the right residual $(a:b)_r$ of a by b.

⁴⁾ Cf. [1, p. 12, Theorem 2.2].

=e, i.e. $(a:b)_t$ is integral. Let u and v be two integral elements such that $uv \le (a:b)_t$ and $u \le (a:b)_t$. Then $buv \le a$ and $bu \le a$. Hence $a < bu < a \le bu < b = b$. This implies b = bu < a, and so $bv = buv < av \le a$, $v \le (a:b)_t$. This shows that $(a:b)_t$ is prime. Similarly $(a:b)_r$ is prime. The other part of this lemma is evident.

In the following we suppose that any prime is divisor-free.

Lemma 2. Let a be an integral element of L, and X a set of elements x such that $x^{\sigma} \le a$ for a suitable whole number $\sigma = \sigma(x)$. If the descending chain condition (d.c.c.) holds for the interval $e/a = \{y; a \le y \le e\}$, then there exists a whole number ρ such that (sup X) $^{\rho} \le a$.

Proof. If the set X consists of the element a only, then our assertion is trivial. We assume that X contains at least two elements. Then evidently $u=\sup X>a$. We find now that u is not an idempotent. For, let u be an idempotent. Since $eu\geq u^2=u>a$, we have $(a:u)_r\neq e$. Take an element m which covers $(a:u)_r$. Then $p=((a:u)_r:m)_t$ is a prime element, and so p is divisor-free. If $e=u\smile p$, then $e=(\sup X)\smile p=\sup_{x\in X}(x\smile p)$. Hence there exists $x_0\smile p$ ($x_0\in X$) such that $e=x_0\smile p$. Since there exists a whole number σ such that $x_0^\sigma\leq a$, we obtain $e=e^\sigma=(x_0\smile p)^\sigma=\bigcup_{i,j}f_ipg_j\leq p$, a contradiction. Now, if $u\smile p=p$, then $u\leq p$. On the other hand, since $mpu\leq a$, we obtain $mu=mu^2\leq mpu\leq a$. Hence $m\leq (a:u)_r$. This is a contradiction. Repeating the above arguments to the set x_0 , we obtain $u^2=(\sup X)u=\sup (x_0)>(\sup (x_0))^2=u^4$. Continuing in this way we have $u>u^2>u^4>\cdots$, $u^p\leq a$.

Lemma 3. Let a be an integral element of L. If the d.c.c. holds for the interval e/a, then a contains a product of finite number of primes.

Proof. Let X be the set of all elements x such that $x^{\sigma} \le a$ for a suitable whole number σ . Take an element c_1 which covers $u = \sup X$. Then $p_1 = (u:c_1)_r \neq e,^{\epsilon_r}$ and p_1 is a prime element. If $c_1 \le p_1$, then $c_1^2 \le p_1 c_1 \le u$, $c_1 \in X$, a contradiction. Hence $c_1 \le p_1$. If $p_1 \neq u$, then we take an element c_2 such that $c_2 \le p_1$ and c_2 covers u. Put $p_2 = (u:c_2)_r$. Then, since $c_2 \le p_2$ and $c_2 \le p_1$, the prime element p_2 ($\neq e$) is not equal to p_1 . If $p_1 \frown p_2 \neq u$, then we take an element c_3 such that $c_3 \le p_1 \frown p_2$ and c_3 covers u. Put $p_3 = (u:c_3)_l$. Then p_3 ($\neq e$) is not equal to p_1 and p_2 . Continuing in this way, we obtain, after a finite number of steps, $p_1 \frown \cdots \frown p_n = u$. Since there exists a whole number ρ such that $u^p \le a$, we obtain

$$(p_1\cdots p_n)^{\rho} \leq (p_1 \wedge \cdots \wedge p_n)^{\rho} = u^{\rho} \leq a.$$

This proves our assertion.

Lemma 4. Suppose that the restricted descending chain condition

⁵⁾ If $x^{\sigma} \leq a$ $(x \in X)$, then $(xu)^{\sigma} \leq a$.

⁶⁾ If $p_1=e$, then $c_1=ec_1=p_1c_1 \le u$, a contradiction.

(r.d.c.c.) holds for integral elements in L, and any prime contains an element c satisfying $c^{-1}c^{-1} = c$. If both a and a^{-1} are integral, then a = e.

Proof. Let $a \le e$, $a \ne e$. Using Lemma 1, we can take a prime element p such that $a \le p < e$. Since $e \ge a^{-1} \ge p^{-1} \ge e^{-1} = e$, it follows that $a^{-1} = p^{-1} = e$. Let $c = c^{-1}$ be an element contained in p, and $p_1 \cdots p_{\lambda}$ a product of finite number of primes which is contained in c. Suppose now that λ is minimal. Then $\lambda \ne 1$. For, let $\lambda = 1$, then $p_1 \le c \le p$, $p_1 = c = p$. Hence $c^{-1} = p^{-1} = e$, hence c = e, and hence p = e, a contradiction. Since $p_1 \cdots p_{\lambda} \le c$, there exists p_i such that $p_i \le p$, $p_i = p$. Putting $P = p_1 \cdots p_{i-1}$, $Q = p_{i+1} \cdots p_{\lambda}$, we have $c^{-1}P \cdot pQ \le c^{-1}c \le e$, and $c^{-1}P \le (pQ)^{-1}$. On the other hand, since $pQ(pQ)^{-1} \le e$, we have $Q(pQ)^{-1} \le p^{-1} = e$, and $(pQ)^{-1} \le Q^{-1}$. Hence $c^{-1}P \le Q^{-1}$. This implies $c^{-1}PQ \le Q^{-1}Q \le e$, $PQ \le c^{-1} = e$, i.e. $p_1 \cdots p_{i-1}p_{i+1} \cdots p_{\lambda} \le c$, we have a contradiction to the minimality of λ .

Theorem 1. Let L be a residuated lattice with a maximally integral identity e. Suppose that

- (1)* The r.d.c.c. holds for integral elements of L.
- (2) Any prime element is devisor-free.
- (3) Any prime element contains an element c such that $c^{-1^{-1}}=c$. Then L forms a commutative cl-group, which is a direct product

of infinite cyclic groups generated by prime elements.

Proof. $aa^{-1} \le e$ is evident. Since $(aa^{-1})(aa^{-1})^{-1} \le e$, we have $a^{-1}(aa^{-1})^{-1} \le a^{-1}$, $(aa^{-1})^{-1} \le e$. Hence $aa^{-1} = e$. L forms therefore a cl-group. The other part of the theorem is easily obtained. Q.E.D.

It is easy to prove the converses of Theorems 1 and 2.6 [1]. Hence we obtain the following:

Theorem 2. Let L be a residuated lattice with a maximally integral identity. Suppose that any prime is divisor-free and contains an element c satisfying $c^{-1}=c$. Then the following two conditions are equivalent.

- (1) The a.c.c. holds for integral elements of L.
- $(1)^*$ The r.d.c.c. holds for integral elements of L.

By Theorem 4.5 in $\lceil 1 \rceil$, we obtain

Theorem 3. Let v be a regular order in a semigroup. Suppose that v is maximal and any closed prime v-ideal is a maximal closed two-sided v-ideal. Then the followings are equivalent:

- (A) The a.c.c. holds for closed integral v-ideals.
- (B) The r.d.c.c. holds for closed integral v-ideals.

References

- [1] K. Asano and K. Murata: Arithmetical ideal theory in semigroups, Jour. Institute of Polytechnics Osaka City Univ., series A, 4, no. 1 (1953).
- [2] G. Birkhoff: Lattice Theory, Amer. Math. Coll. Publ., 25 (2nd ed.) (1948).