9. On Eigenfunction Expansions of Self-adjoint
 Ordinary Differential Operators. II

By Takashi Kasuga
(Comm. by K. Kunugi, M.J.A., Jan. 13, 1958)

§3. We introduce the characteristic matrix of H by

$$
\begin{align*}
& M_{11}=f_{a}(l) \cdot f_{b}(l)\left[f_{a}(l)-f_{b}(l)\right]^{-1} \\
& M_{12}=M_{21}=(1 / 2)\left[f_{a}(l)+f_{b}(l)\right]\left[f_{a}(l)-f_{b}(l)\right]^{-1} \tag{10}\\
& M_{22}=\left[f_{a}(l)-f_{b}(l)\right]^{-1}
\end{align*}
$$

where $f_{a}(l), f_{b}(l)$ are the characteristic functions of H. By (1), $M_{j k}$ ($j, k=1,2$) are regular on the upper and the lower half complex planes $(\Im l \neq 0)$ and

$$
\begin{equation*}
M_{j k}(\bar{l})=\overline{M_{j k}(l)} \quad(j, k=1,2) . \tag{11}
\end{equation*}
$$

For every real number λ, the limits

$$
\begin{equation*}
\rho_{j k}(\lambda)=\lim _{\substack{\delta \rightarrow+0 \\ \delta^{\prime} \rightarrow+0}} \lim _{\varepsilon \rightarrow+0} \pi^{-1} \int_{\delta}^{\lambda+\delta^{\prime}} \Im M_{j k}(\lambda+i \varepsilon) d \lambda \tag{12}
\end{equation*}
$$

exist. ${ }^{11}$
As a function of λ, the matrix function $p(\lambda)=\left(\rho_{j k}(\lambda)\right)$ is continuous on the right and monotone non-decreasing in the sense that, for $\mu<\lambda$, the symmetric matrix $p(\lambda)-p(\mu)$ is positive semi-definite. ${ }^{2)}$ Hence by the well-known procedure we can construct the matrix set function $p(B)=\left(\rho_{j k}(B)\right)$ of bounded Borel sets B on the real line corresponding to $p(\lambda) . p(B)$ is positive semi-definite, and completely additive on every bounded Borel set. For every $\nu>0$, the residual terms

$$
\begin{equation*}
R_{j k}^{(\nu)}(l)=M_{j k}(l)-\int_{-\nu}^{\nu}(\lambda-l)^{-1} d \rho_{j k}(\lambda) \tag{13}
\end{equation*}
$$

are regular in the l-plane except for real l such that $l \leqq-\nu$ or $l \geqq \nu .^{2)}$ For the transformation (2) of the system of fundamental solutions, $\rho_{j k}(\lambda)$ are transformed as follows

$$
\begin{equation*}
\rho_{j k}(\lambda)=\int_{0}^{\lambda} \sum_{m, n} \beta_{m j}(\lambda) \beta_{n k}(\lambda) d \widetilde{\rho}_{m n}(\lambda) .{ }^{3)} \tag{14}
\end{equation*}
$$

By (11), (12) and the regularity of $M_{j k}(l)$ for $\Im l \neq 0$, we have for $\lambda^{\prime}>\lambda$

$$
\begin{equation*}
\rho_{j k}\left(\lambda^{\prime}\right)-\rho_{j k}(\lambda)=-\lim _{\substack{\mu \rightarrow \lambda+0 \\ \mu^{\prime} \rightarrow \lambda+0}} \lim _{\varepsilon \rightarrow+0}(2 \pi i)^{-1} \int_{\left.C_{(\mu, \mu}, \mu, \alpha, \varepsilon\right)} M_{j k}(l) d l \tag{15}
\end{equation*}
$$

where $C\left(\mu^{\prime}, \mu, \alpha, \varepsilon\right)$ means the contour consisting of two oriented polygonal lines whose vertices, in order, are $\mu^{\prime}+i \varepsilon, \mu^{\prime}+i \alpha, \mu+i \alpha, \mu+i \varepsilon$

1) Cf. Kodaira [3], Theorem 1.3.
2) Cf. Kodaira [3], Theorem 1.3.
3) Cf. Kodaira [3], p. 932.
and $\mu-i \varepsilon, \mu-i \alpha, \mu^{\prime}-i \alpha, \mu^{\prime}-i \varepsilon$, respectively, the real number $\mu^{\prime}, \mu, \alpha, \varepsilon$ being subject to the inequalities $\mu^{\prime}>\mu, \alpha>\varepsilon \geqq 0$.
§4. Theorem 2. Let G be the set of points λ on R such that the characteristic function $f_{b}(l)$ is meromorphic in a neighbourhood of λ. If we put for $\lambda \in R$ and bounded $B \in \mathfrak{B}(\mathfrak{B}$ is the family of Borel sets on R)

$$
\rho(\lambda)=\rho_{11}(\lambda)+\rho_{22}(\lambda) \quad \rho(B)=\rho_{11}(B)+\rho_{22}(B) \quad(\geqq 0)
$$

and for $\lambda \in G$
then

$$
\left.g_{b}(\lambda)=f_{b}(\lambda)\left[f_{b}^{2}(\lambda)+1\right]^{-1 / 2} \quad h_{b}(\lambda)=\left[f_{b}^{2}(\lambda)+1\right]^{-1 / 2}, 4\right)
$$

$$
\begin{cases}\rho_{11}(B)=\int_{B} g_{b}^{2}(\lambda) d \rho(\lambda) & \rho_{12}(B)=\rho_{21}(B)=\int_{B} g_{b}(\lambda) h_{b}(\lambda) d \rho(\lambda) \tag{16}\\ \rho_{22}(B)=\int_{B} h_{b}^{2}(\lambda) d \rho(\lambda) & \left(g_{b}^{2}(\lambda)+h_{b}^{2}(\lambda)=1 \quad \text { for } \quad \lambda \in G\right)\end{cases}
$$

for a bounded Borel set B contained in G.
Proof. i) Interval of type I.
We assume at first that $f_{b}(l)$ is regular on a domain D containing a bounded open interval I on R.

We take four real $\sigma, \mu, \mu^{\prime}, \sigma^{\prime}\left(\sigma<\mu<\mu^{\prime}<\sigma^{\prime}\right)$ belonging to I. Now we take in (13) a ν such that $\nu>|\sigma|,\left|\sigma^{\prime}\right|$.

By (10), for the domain $D-R$, we have

$$
\left\{\begin{array}{l}
M_{11}(l)=f_{b}^{2}(l) M_{22}(l)+f_{b}(l) \tag{17}\\
M_{21}(l)=M_{12}(l)=f_{b}(l) M_{22}(l)+1 / 2
\end{array}\right.
$$

Here the last terms $f_{b}(l)$ and $1 / 2$ are regular on D by the assumption on $f_{b}(l)$.

By (13), we have for the domain $D-R$

$$
\begin{align*}
& f_{b}^{2}(l) M_{22}(l)=f_{b}^{2}(l) \int_{-\nu}^{\nu}(\lambda-l)^{-1} d \rho_{22}(\lambda)+f_{b}^{2}(l) R_{22}^{(\nu)}(l) \\
& \quad=\int_{\sigma}^{\sigma^{\prime}} f_{b}^{2}(\lambda)(\lambda-l)^{-1} d \rho_{22}(\lambda)+\int_{\sigma}^{\sigma^{\prime}}\left[f_{b}^{2}(l)-f_{b}^{2}(\lambda)\right](\lambda-l)^{-1} d \rho_{22}(\lambda) \tag{18}\\
& \quad+f_{b}^{2}(l) \int_{-\nu}^{\sigma}(\lambda-l)^{-1} d \rho_{22}(\lambda)+f_{b}^{2}(l) \int_{\sigma^{\prime}}^{\nu}(\lambda-l)^{-1} d \rho_{22}(\lambda)+f_{b}^{2}(l) R_{22}^{(\nu)}(l) \\
& =\int_{\sigma}^{\sigma} f_{b}^{2}(\lambda)(\lambda-l)^{-1} d \rho_{22}(\lambda)+R_{22}(l) .
\end{align*}
$$

Here $R_{22}(l)$ is regular on $[D-R] \bigcup\left(\sigma, \sigma^{\prime}\right)$ by the assumptions on $f_{b}(l)$ and ν. For example

$$
\int_{\sigma}^{\sigma^{\prime}}\left[f_{b}^{2}(l)-f_{b}^{2}(\lambda)\right](\lambda-l)^{-1} d \rho_{22}(\lambda)
$$

is regular on D, since $\left[f_{b}^{2}(l)-f_{b}^{2}(\lambda)\right](\lambda-l)^{-1}$ is regular on $D \times D$ as a function of (l, λ).

We take a contour $C\left(\mu^{\prime}, \mu, \alpha, \varepsilon\right)$ as used in (15) for which $\alpha(>0)$
4) If $f_{b}(\lambda)=\infty$, we put $g_{b}(\lambda)=1, h_{b}(\lambda)=0$.
is sufficiently small so that the closed contour $C\left(\mu^{\prime}, \mu, \alpha, 0\right)$ and its interior are contained in the domain $[D-R] \bigcup\left(\sigma, \sigma^{\prime}\right)$. We write $C(\varepsilon)$ for such contour $C\left(\mu^{\prime}, \mu, \alpha, \varepsilon\right)$ when we regard $\mu^{\prime}, \mu, \alpha$ as fixed and only $\varepsilon(\alpha>\varepsilon>0)$ as variable.

From the first formula of (17) and (18), by Cauchy's integral theorem and Fubini's theorem, we have

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow+0} \int_{\sigma(\varepsilon)} M_{11}(l) d l=\lim _{\varepsilon \rightarrow+0} \int_{\sigma(\varepsilon)}\left(\int_{\sigma}^{\sigma^{\prime}} f_{b}^{2}(\lambda)(\lambda-l)^{-1} d \rho_{22}(\lambda)\right) d l \\
& \quad=\lim _{\varepsilon \rightarrow+0} \int_{\sigma}^{\sigma} f_{b}^{2}(\lambda)\left(\int_{\sigma(\varepsilon)}(\lambda-l)^{-1} d l\right) d \rho_{22}(\lambda) . \tag{19}
\end{align*}
$$

But by Cauchy's integral formula and its modifications in the case when the point λ lies outside or on the contour, we have

$$
\lim _{\varepsilon \rightarrow+0} \int_{O(\ell)}(\lambda-l)^{-1} d l=\left\{\begin{array}{cll}
-2 \pi i & \text { if } \quad \mu^{\prime}>\lambda>\mu \tag{20}\\
-\pi i & \text { if } \lambda=\mu^{\prime} \text { or } \lambda=\mu \\
0 & \text { if } \lambda>\mu^{\prime} \text { or } \lambda<\mu .
\end{array}\right.
$$

On the other hand, we have for real λ, ε such that $\sigma<\lambda \leqq \sigma^{\prime}$ $0<\varepsilon<\alpha$

$$
\begin{aligned}
& \left|\int_{C_{(\varepsilon)}}(\lambda-l)^{-1} d l\right|=\left|-2 i \int_{\mu}^{\mu^{\prime}} \mathfrak{Y}\left[(\lambda-s-i \varepsilon)^{-1}\right] d s\right| \\
= & 2 \int_{\mu}^{\mu^{\prime}} \varepsilon\left[(\lambda-s)^{2}+\varepsilon^{2}\right]^{-1} d s=2\left(\operatorname{Tan}^{-1}\left(\mu^{\prime}-\lambda\right) \varepsilon^{-1}-\operatorname{Tan}^{-1}(\mu-\lambda) \varepsilon^{-1}\right) \leqq 2 \pi .
\end{aligned}
$$

By (20) and (21), we can take the limit with respect to ε in the last term of (19) inside the integral sign with respect to $\rho_{22}(\lambda)$. Therefore

$$
\begin{gather*}
\lim _{\varepsilon \rightarrow+0} \int_{O(\varepsilon)} M_{11}(l) d l=-2 \pi i \int_{\mu}^{\mu^{\prime}} f_{b}^{2}(\lambda) d \rho_{22}(\lambda) \tag{21}\\
+\pi i f_{b}^{2}\left(\mu^{\prime}\right)\left[\rho_{22}\left(\mu^{\prime}\right)-\rho_{22}\left(\mu^{\prime}-0\right)\right]-\pi i f_{b}^{2}(\mu)\left[\rho_{22}(\mu)-\rho_{22}(\mu-0)\right], \\
\text { since } \int_{\mu}^{\mu^{\prime}} \text { means } \int_{\left(\mu, \mu^{\prime}\right]} .
\end{gather*}
$$

Hence by (15), considering that $\rho_{22}(\lambda)$ is right continuous, we have for $\lambda^{\prime}, \lambda \in I\left(\lambda^{\prime}>\lambda\right)$

$$
\begin{equation*}
\rho_{11}\left(\lambda^{\prime}\right)-\rho_{11}(\lambda)=\int_{\lambda}^{\lambda^{\prime}} f_{b}^{2}(\lambda) d \rho_{22}(\lambda) . \tag{22}
\end{equation*}
$$

In a quite similar way, starting from the second formula of (17), by making use of (13), (15), we get for $\lambda^{\prime}, \lambda \in I\left(\lambda^{\prime}>\lambda\right)$

$$
\begin{equation*}
\rho_{21}\left(\lambda^{\prime}\right)-\rho_{21}(\lambda)=\rho_{12}\left(\lambda^{\prime}\right)-\rho_{12}(\lambda)=\int_{\lambda}^{\lambda^{\prime}} f_{b}(\lambda) d \rho_{22}(\lambda) . \tag{23}
\end{equation*}
$$

From (22), (23), by the well-known procedure we can conclude that

$$
\begin{equation*}
\rho_{11}(B)=\int_{B} f_{b}^{2}(\lambda) d \rho_{22}(\lambda) \quad \rho_{21}(B)=\rho_{12}(B)=\int_{B} f_{b}(\lambda) d \rho_{22}(\lambda) \tag{24}
\end{equation*}
$$

for a Borel set B contained in I. From this, considering the definition
of $\rho(\lambda), \rho(B), g_{b}(\lambda), h_{b}(\lambda)$, we get (16) for a Borel set B contained in I.
ii) Interval of type J.

Now let $f_{b}(l)$ have a pole at real l_{0}. If we take the new system of fundamental solutions $\widetilde{s}_{1}(x, l)=s_{2}(x, l), \widetilde{s}_{2}(x, l)=-s_{1}(x, l)$, then by (6), (14), we have

$$
\left\{\begin{array}{l}
\widetilde{f}_{b}(l)=-f_{b}^{-1}(l) \quad \tilde{\rho}_{11}(\lambda)=\rho_{22}(\lambda) \quad \tilde{\rho}_{22}(\lambda)=\rho_{11}(\lambda) \tag{25}\\
\tilde{\rho}_{12}(\lambda)=\tilde{\rho}_{21}(\lambda)=-\rho_{12}(\lambda)=-\rho_{21}(\lambda) .
\end{array}\right.
$$

Hence we can find a bounded open interval J on R containing l_{0} such that $\widetilde{f}_{b}(l)$ is regular on a domain D^{\prime} containing J. Then by the same argument as in i), we get (24) where $\rho_{j k}(\lambda), f_{b}(l)$ are replaced by $\tilde{\rho}_{j k}(\lambda), \tilde{f}_{b}(l)$, for a Borel set B contained in J. From this, making use of (25) and considering the definitions of $\rho(\lambda), \rho(B), g_{b}(\lambda), h_{b}(\lambda)$, we get (16) for a Borel set B contained in J.
iii) Since any bounded Borel set B contained in G can be decomposed into mutually exclusive Borel sets $B_{i}(i=1,2, \cdots)$ at most countable in number, each of which is contained in a bounded open interval belonging to one of the above two types I and J, we have (16) for any bounded Borel set B contained in G. q.e.d.
§5. We consider Borel-measurable vector functions $\varphi(\lambda)=\left(\varphi_{1}(\lambda)\right.$, $\left.\varphi_{2}(\lambda)\right)$ on R and put

$$
\begin{equation*}
\|\varphi\|^{*}=\left(\int_{-\infty}^{+\infty} \sum_{j, k} \varphi_{j}(\lambda) \overline{\varphi_{k}(\lambda)} d \rho_{j_{k}}(\lambda)\right)^{1 / 2} \tag{26}
\end{equation*}
$$

Since the matrix $p(\lambda)-p(\mu)(\lambda>\mu)$ is always positive semi-definite, we have $+\infty \geqq\|\varphi\|^{*} \geqq 0$ and $\mathfrak{S}^{*}=\left\{\varphi \mid\|\varphi\|^{*}<+\infty\right\}$ constitutes a Hilbert space by this norm $\|\varphi\|^{*}$ if we identify two $\varphi^{\prime}, \varphi^{\prime \prime} \in \mathfrak{S}^{*}$ such that $\left\|\varphi^{\prime}-\varphi^{\prime \prime}\right\|^{*}=0$. We put for $u(x) \in \mathfrak{S}^{5)}$

$$
\|u\|=\left(\int_{a}^{b}|u(x)|^{2} d x\right)^{1 / 2}
$$

Then \mathfrak{J} constitutes a Hilbert space by this norm $\|u\|$. Now, for every $u \in \mathfrak{F}$, there is a unique $\varphi(\lambda)=\left(\varphi_{1}(\lambda), \varphi_{2}(\lambda)\right)$ such that

$$
\begin{equation*}
\left\|\varphi-\int_{y_{1}}^{y_{2}} s(y, \lambda) u(y) d y\right\|^{*} \rightarrow 0 \quad\left(y_{1} \rightarrow a+0, y_{2} \rightarrow b-0\right) \tag{27}
\end{equation*}
$$

where $s(x, l)=\left(s_{1}(x, l), s_{2}(x, l)\right)^{6)}$ If we make the above φ correspond to u, we have a unitary transformation V from \mathfrak{S} onto \mathfrak{S}^{*} and the inverse transformation V^{-1} is given by

$$
\begin{equation*}
\left(\varphi_{1}, \varphi_{2}\right) \rightarrow \int_{-\infty}^{+\infty} \sum_{j, k} s_{j}(x, \lambda) \varphi_{k}(\lambda) d \rho_{j k}(\lambda) \tag{28}
\end{equation*}
$$

where the integral converges in the mean in the L^{2}-sense. ${ }^{7)}$ Also $u \in \mathscr{I}$
5) Cf. $\S 1$.
6) Cf. Kodaira [3], Theorem 1.4, p. 928.
7) Cf. Kodaira [3], Theorem 1.4, p. 928.
belongs to the domain of H if and only if $\lambda \cdot \varphi(\lambda) \in \mathfrak{S}^{*}$ where $\varphi=V u$, and then

$$
\begin{equation*}
V H u=\lambda \cdot \varphi(\lambda) . \tag{29}
\end{equation*}
$$

If we denote the spectral measure on R corresponding to H by $\left\{E_{B} \mid B \in \mathfrak{B}\right\}$ where \mathfrak{B} is the family of Borel sets on R, then for any $u \in \mathfrak{J}$

$$
\begin{equation*}
V E_{B} u=C_{B}(\lambda) \cdot \varphi(\lambda) \tag{30}
\end{equation*}
$$

where $\varphi=V u$ and $C_{B}(\lambda)$ is the characteristic function ${ }^{8)}$ of the Borel set B. ${ }^{9>}$
§6. In this section, we shall state and prove some results which follow from the formulas of $\S 5$ by use of Theorem 1 and Theorem 2.

Let G and $\rho(\lambda), g_{b}(\lambda), h_{b}(\lambda)$ be defined as in Theorem 2. In the following, we put $g_{b}(\lambda)=h_{b}(\lambda)=0$ for $\lambda \in R-G$.

By (30), the unitary transformation V_{G}, the restriction of V on $E_{G}(\mathfrak{g})$, has as its range the closed linear submanifold \mathfrak{g}_{G}^{*} of \mathfrak{g}^{*} consisting of $\varphi \in \mathfrak{S}^{*}$ vanishing outside G. By Theorem 2 and (26), (28), we have

$$
\begin{equation*}
\|\varphi\|^{*}=\left(\int_{G}\left|h_{b}(\lambda) \varphi_{2}(\lambda)+g_{b}(\lambda) \varphi_{1}(\lambda)\right|^{2} d \rho(\lambda)\right)^{1 / 2} \tag{31}
\end{equation*}
$$

for $\varphi \in \mathfrak{S}_{G}^{*}$, and V_{G}^{-1} is given by

$$
\begin{align*}
V_{G}^{-1}: & \left(\varphi_{1}(\lambda), \varphi_{2}(\lambda)\right) \rightarrow \int_{-\infty}^{+\infty}\left[h_{b}(\lambda) s_{2}(x, \lambda)+g_{b}(\lambda) s_{1}(x, \lambda)\right] \tag{32}\\
& \times\left[h_{b}(\lambda) \varphi_{2}(\lambda)+g_{b}(\lambda) \varphi_{1}(\lambda)\right] d \rho(\lambda)
\end{align*}
$$

where the integral converges in the mean in the L^{2}-sense.
We denote by $\mathfrak{g}_{G}^{* *}$ the set of functions on R vanishing outside G and square integrable with respect to the measure $\rho(B)$ on G and put

$$
\begin{equation*}
\|\psi\|^{* *}=\left(\int_{G}|\psi(\lambda)|^{2} d \rho(\lambda)\right)^{1 / 2} \tag{33}
\end{equation*}
$$

for $\psi(\lambda) \in \mathfrak{S}_{G}^{* *}$. Then $\mathfrak{g}_{G}^{* *}$ constitutes a Hilbert space by this norm $\|\psi\| * *$.

Now by (31), (33) and the fact that $g_{b}^{2}(\lambda)+h_{b}^{2}(\lambda)=1$ for $\lambda \in G$, the transformation U from $\mathfrak{S}_{G}^{* *}$ defined by

$$
\begin{equation*}
U: \psi(\lambda) \rightarrow\left(g_{b}(\lambda) \psi(\lambda), h_{b}(\lambda) \psi(\lambda)\right) \tag{34}
\end{equation*}
$$

is a unitary transformation from $\mathfrak{S}_{G}^{* *}$ onto \mathfrak{S}_{G}^{*} and the inverse transformation U^{-1} is given by

$$
\begin{equation*}
U^{-1}:\left(\varphi_{1}(\lambda), \varphi_{2}(\lambda)\right) \rightarrow h_{b}(\lambda) \varphi_{2}(\lambda)+g_{b}(\lambda) \varphi_{1}(\lambda) . \tag{35}
\end{equation*}
$$

Hence if we put $W=U^{-1} V_{G}$, then W is a unitary transformation from $E_{G}(\mathfrak{J})$ onto $\mathfrak{L}_{G}^{* *}$. By (27), (30), (35), for $u \in \mathfrak{H}, W E_{G} u$ is given by

$$
\begin{equation*}
\left\|W E_{G} u-\int_{y_{1}}^{b}\left[h_{b}(\lambda) s_{2}(y, \lambda)+g_{b}(\lambda) s_{1}(y, \lambda)\right] u(y) d y\right\|^{* *} \rightarrow 0\left(y_{1} \rightarrow a+0\right) \tag{36}
\end{equation*}
$$

8) This should not be confused with the characteristic functions $f_{a}(\lambda), f_{b}(\lambda)$ of the operator H.
9) Cf. Kodaira [3], Theorem 1.4, p. 928.
where the integral has its proper sense with respect to its upper limit b, since the function $k_{\lambda}(x)=h_{b}(\lambda) s_{2}(x, \lambda)+g_{b}(\lambda) s_{1}(x, \lambda)$ belongs to ${ }^{(53 \prime}{ }_{b}^{\prime}$ for each $\lambda \in G$ by Theorem 1 and the definitions of $g_{b}(\lambda), h_{b}(\lambda)$. $k_{\lambda}(x)$ is also a non-trivial solution of $L[u]=\lambda \cdot u$ for each $\lambda \in G$.

By (32), (34), for $\psi \in \mathfrak{S}_{\mathscr{G}}^{* *}, W^{-1}$ is given by

$$
\begin{equation*}
W^{-1}: \psi(\lambda) \rightarrow \int_{-\infty}^{+\infty}\left[h_{b}(\lambda) s_{2}(x, \lambda)+g_{b}(\lambda) s_{1}(x, \lambda)\right] \psi(\lambda) d \rho(\lambda) \tag{37}
\end{equation*}
$$

where the integral converges in the mean in the L^{2}-sense.
By (29) and (35), $E_{G} u$ where $u \in \mathfrak{F}$, belongs to the domain of H if and only if $\lambda \cdot \psi(\lambda) \in \mathfrak{I}_{\vec{G}}^{* *}$ where $\psi=W E_{G} u$, and then

$$
\begin{equation*}
W H E_{G} u=\lambda \cdot \psi(\lambda) \tag{38}
\end{equation*}
$$

Also by (30) and (35), if $\psi=W E_{G} u$ where $u \in \mathfrak{I}$, we have for a Borel set B contained in G

$$
\begin{equation*}
W E_{B} u=C_{B}(\lambda) \cdot \psi(\lambda) \tag{39}
\end{equation*}
$$

where $C_{B}(\lambda)$ is the characteristic function of B on R.
Remark 1. We have stated and proved Theorem 2 and the results in $\S 6$ for the end point b, but of course similar results can be obtained for the end point a.

Remark 2. From (38) or (39) we see that H has a simple spectrum on $G^{10\rangle}$ and from (39), (36), (37) we see that $\left\{k_{\lambda}(x) \mid k_{\lambda}(x)=h_{b}(\lambda) s_{2}(x, \lambda)\right.$ $\left.+g_{b}(\lambda) s_{1}(x, \lambda), \lambda \in G\right\}$ is the set of continuous eigenfunctions for $\lambda \in G$ in the sense of Mautner. ${ }^{11)}$ Theorem 1 states that the continuous eigenfunction $k_{\lambda}(x)$ for each $\lambda \in G$ belongs to \mathscr{S}_{b}^{\prime}. Also $k_{\lambda}(x)$ is a nontrivial solution of $L[u]=\lambda \cdot u$ for $\lambda \in G$.

References

[1]-[9], listed at the end of part I, Proc. Japan Acad., 33, 595 (1957).
10) Cf. Stone [5], Chapter VII.
11) Cf, Mautner [4]. Also cf. Bade and Schwartz [1].

