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5. Two Theorems on Fourier Transform
By Takao KAKITA

(Comm. by K. KUNU(, M.J.A., Jan. 13, 1958)

In "Thorie des Distributions" L. Schwartz stated without com-
plete proof that two topological vector spaces ( and ( are topo-
logically isomorphic by Fourier transform. Here we shall give a full
proof of the theorem.

On the other hand, according to K. Nomizu, a theorem of the
same type was proved in C. Chevalley’s lecture. The only difference
is that Chevalley introduced into ( the bounded-open topology, re-
garding it as the space L((R), (R)) of continuous linear operators from
(R) to (R). Thus the proof which we shall give concludes that Schwartz’s
topology in ( and Chevalley’s topology coincide.

Next, in 1936, M. Plancherel and G. Polya have proved two main
theorems in their paper [1; one is an extension of the Paley-Wiener’s
theorem to the multiple integrals of Fourier, and the other a theorem
on a simple relation between the spectre of an entire function of
exponential type and the order of increase of the function in different
directions. The former has been generalized by L. Schwartz [2 to
the case with which distributions with compact carriers are concerned.

Similar generalization of the latter theorem of Plancherel-Polya
was indicated by Schwartz. But no proof seems to have been published.
In this paper, we shall give the formulation and the proof of the
theorem.

The author wishes to express his sincere thanks to Professor T.
Iwamura for his helpful advices.

1. Schwartz’s theorem. By (R)0 we mean the space of rapidly de-
creasing continuous functions with the topology defined by semi-norms

p(f)- sup (1 -r)if(x)] (f (R)o)
where k is a positive integer.

We shall give two lemmas.
Lemma 1.1. Let B be a bounded set of o. Then there exist a

function qo (R) and a constant c such that f(x) ic ]9o(x) for all f e B.
The proof is classical and so omitted.
Lemma 1.2. Let P(x) be a polynomial on R. Then PT belongs

to (C)v when T )v, and the mapping T ) --> PTe( is continuous,
according to Schwartz’s topology.

Proof. Let the degree of P(x) be m. It is obvious that Pp(1-t-r)
for each (p.. So we have PTe(, since

(1 +r)PT.o=(1+r)+T. Pep(1 +r)-.
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The continuity of the mapping is also obtained from the fact that
the mapping (p _q) -> Pq(1+r)- , is continuous.

Theorem 1. ( is topologically isomorphic to (% by Fourier

transform (cf. Note 1, p. 27).
Proof. Since it has been proved in TD (cf. Note 2, p. 27) that

Gn is algebraically isomorphic to G by Fourier transform
First, we shall prove the continuity of the mapping " GG,.

Take a neighborhood of 0 in , U(B, k)={Te;](l+r)T.[l
for all B}, where B is a bounded set of . Suppose g.
Then [g belongs to 0, since (l+r)[g=[Dg is a bounded
continuous function, where D=[(l+r) so that D=(1--).
And the mapping :0 is continuous since maps L continu-
ously into L% Therefore [B is a bounded set of 0. Thus, by
Lemma 2, there exist a function e and a constant c such that

sup [g(x)[ c](x).
Now we set V(, k)={h e; sup Dh(x) 1}, where

f
It is clear that and therefore V(, k) is a neighborhood of 0
in . We shall show that [V(, k) U(B, k). Suppose he V(, k).
Then from the equality

(1+r)[h],g=h.[(1+r)g =h.D[g]
it follows that

=ff fDh(x)[g(x) dx

ff... f (1 (1

hus we have [V(,)U(B, ) whieh roves the eontinuity
of the maing "Now we shall rove the continuity of the maing
We shall show that

is a neighborhood of 0 in where p, and D is a differential
oerator. Since DT=[PvT, where Pv is the olynominal
and since the maing TePT is continuous by emma
it is sueient to show that

is a neighborhood of 0 in . Since mas onto , there exists
a funetion s such that [=. hen we have
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We remark that the mapping Te) T. e is continuous where
e ( 5, VI in TD), and that gives a homeomorphism between
and . From the above equality and this remark, we see that U is
a neighborhood of 0 in . Thus we have completed the proof.

2. Plancherel-Polya’s theorem. To formulate the theorem we
shall introduce some necessary definitions following [1.

By a direction in R we meaa a vector =(,..., )R satisfy-
ing the condition

() -.
Let F(z) be an entire function of exponential type. Then there

exist positive numbers A and a satisfying

(2) f(z,...,Zn)[<Aexpa([z[+...+[z[)
for all zC (complex n-dimentional spaces).

Let 2=(2,..., 2) be a direction and a,..., a be arbitrary real
numbers. It follows easily from (1) and (2),

lim r- log f(a--ir) na
where a=(a,. .,a).

Hence we can define a function of direction

( 3 ) h()=sup lim r- log]f(a--ir)

If F belongs to Exp O, then, as is well known,
distribution belonging to ’. Let K be the spectre of F, that is the
carrier o T which is necessarily a eompaet set in R. We introduce
another funetion X() of direction in R, associated with K, by

4 ) x() ax (, }-Max(+... +).
We shall use the following lemma whieh has been established by

Planeherel-Polya.
Lemma 2.1. If

1) f(z,..., z) is an entire function of exponentia type on C,
2) =(,..., 2) is an arbitrary but fixed direction in R,
) f(x,. ., ) L(R),
then [f(y)=0

Our generalized theorem, of which the proof is needed, is:
Theorem 2. Let h() and X() be the functions defined by (3)and

(4), respectively, for FExpO,. Then we have
Remark 1. For n= 1 the above theorem is a more detailed result

han the generalized Paley-Wiener’s theorem in [2.
Remark 2. The topology of D=[ is defined, following [3,

as an inductive limit of D=[, aeh of which is topologized by
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means of a fundamental system of neighborhoods of 0, given by

Up,s= {P Dk; sup IP(z)(z)t},
zC

corresponding to all polynominals P on C and all positive numbers a,
where C {z= (z,. ., z,) e C’; (z) ]a, i= 1,..., n}.

We define the topology of Exp by the fundamental system of
neighborhoods of 0

W(C, V) {F e Exp n; CF e V for all e C},
corresponding to all compact sets C in D and all open sets V in D.
Exp, with the compact-open topology mentioned above is topologi-
cally isomorphic to ’ by the transformation .

Proof of the theorem. First, we prove the inequality ()h().
Let B be a sequence of functions e, convergent to Dirac

measure in ’ and satisfying -fl. It is obvious that .
and

where we set F--T]. Since ,TT in ’, we have,TIfF
in Exp G, by Remark 2.

The topology of Exp introduced above being stronger than
the topology of point-wise convergence, we conclude

E*T(z)F(z) (j)
for each zCn. Put Z(j)=Max(, y} where K denotes the carrier

ygj
of B,T. Let us show

lim ;(j) (j).

Let e be any positive number. Since i(j,x}-(, y}lx-yl and
since the e-neighborhood of Carr.(T) contains Carr.(T.) for all
sufficiently large numbers j, we have ;(J)(J)+e for such
(It is sufficient to have this inequality for the proof of our theorem.)
Now choose a point y e.Carr. (T) so as to satisfy (j)=(, y}. Then
(T, a}0 for some a e with Carr. (a) contained in the e-neighbor-
hood W of y. (T., a} (T, a}, convergent to (T, a}, is different
from 0 for all sufficiently large j and, for such j, the neighborhood
W contains a point of Carr. (T.), which implies

Thus we have lim Xy(2) X(2).
From the definition of Fourier transform, it follows

Here we consider a family of functions {Nz,,()} defined by

=ex 
When such a function of is subjected to a differential oerator
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D with constant coefficients, we have
5 ) DE,,(y)--P(, , r)E,,(y)

where P(, , r) denotes a polynomial of variables , a and r.

Now let 2 and 9 be -and --e-neighborhoods of Cart. (T) and
2 3

p(x) be a function belonging to , which is equal to 1 on and 0
for x. Then

()--(, y}+>0 for all y9,

and with the aid of (5) we can conclude that
(y)E(y) (y) [exp (()+e)r E,,(y)

forms a bounded set in when , a are fixed and r0 varies.
For all sufficiently large j, we have Carr. (T,)t2 and so

T,B.Er--T,.pE T.pE-- T. Er
uniformly for all r>0 when j, since T.BT in ’. Hence
there exists a constant M(L a)>0, depending only on and a, such
that

T, B. Er] M(, )
for all r0 and for all sufficiently large j, which implies- log F(--ir) ()+e+r- log M(, ).

Letj and then r; we thus obtain

lim r log F(a--ir)

for all e, which proves h()().
Now take 2 with Carr. (B) S- Ix; Ix]< e}. Then we have,

from the classical Paley-Wiener’s theorem,
lim r- log B](--ir)E(--ir)

lim r- log J(a--ir) + lim r- log lF(a--ir)

Setting h()--sup lira log ]F(-ir)], we have

h() e+h().
Now we remark that B]FL(R). Thus by the above-men-

tioned lemma, it holds

JF(y)=. T(y)-O
for all y satisfying h()< (, y (and accordingly for all y satisfying

Consequently we have
U,-{y; (, y) h()+e} Carr. (T, ).

Since Carr. () can be taken in any neighborhood of the origin,
U Carr. (T)

for every e>0, which means that
{y; (, y h()} Carr. (T).
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Thus we obtain the inequality )()h() which completes the
proof of :()--h().

Note 1. By the Fourier transform fff of a function f e(R) we
mean the function

()-ff ff()exp (--i(x, y>)d.

[T], the transform of the distribution T e (R)’, is defined as usual by

where f e.
Note 2. We abbreviate "Thorie des Distributions" to TD.
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