4. A Note on the Integration by the Method of Ranked Spaces

By Teruo Ikegami

(Comm. by K. KUNUGI, M.J.A., Jan. 13, 1958)

§ 1. Prof. K. Kunugi showed in his note "Application de la méthode des espaces rangés à la théorie de l'intégration. I"¹⁾ that a new integration can be constructed by the method of ranked spaces,²⁾ and suggested that the development of his theory could be generalized for functions on abstract spaces — for example, locally compact topological groups. In this note, we shall consider the locally compact group G and we shall show that the construction of integrals can be done without changing any detail of the preceding note.

Let G be a locally compact group, m be a Haar measure in $G^{(3)}$ that is, a Borel measure in G, such that m(U) > 0 for every non empty Borel open set U, and m(xE) = m(E) for every Borel set E, and for every element x of G.

First we shall remark that, in a locally compact group there is a fundamental system of neighbourhoods of unit element e, which consists of neighbourhoods whose boundaries are of measure zero.

Let V be a compact neighbourhood of unit element e whose boundary is of measure zero, and from now on our considerations are restricted to the fixed V.

Let the family \mathcal{O} be a totality of open sets in V whose boundaries are of measure zero. Then,

(1) If $O_1 \in \mathcal{O}$, $O_2 \in \mathcal{O}$ then $O_1 \subseteq O_2 \in \mathcal{O}$, $O_1 \subseteq O_2 \in \mathcal{O}$.

(2) If $O_1 \in \mathcal{O}$, $O_2 \in \mathcal{O}$ then $O_1 \frown (V - \overline{O}_2) \in \mathcal{O}$.

The vector space over the field of real numbers generated by characteristic functions of sets in \mathcal{O} is denoted by φ . To $f \in \varphi$ correspond a finite number of disjoint sets $O_i \in \mathcal{O}$ $(i=1, 2, \dots, n)$ and

$$f(x) = \sum_{i=1}^{n} \alpha_i \chi_{0_i}(x)$$

where χ_{0_i} is a characteristic function of O_i , and α_i is a real number. Two functions of Φ , f(x), g(x) are identified when they are different only on the boundary of $O \in \mathcal{O}$. Obviously if $f \in \Phi$, $g \in \Phi$ then $f + g \in \Phi$,

¹⁾ K. Kunugi: Application de la méthode des espaces rangés à la théorie de l'intégration. I, Proc. Japan Acad., **32**, 215-220 (1956).

²⁾ K. Kunugi: Sur les espaces complets et régulièrement complets. I, II, Proc. Japan Acad., **30**, 553-556, 912-916 (1954).

³⁾ On Haar measure, see for example P. R. Halmos; Measure Theory, New York (1950).

 $\alpha f \in \Phi$ (α is real), and $|f| \in \Phi$, the set of point of discontinuity of f is of measure zero. For $f \in \Phi$ we define its integral

$$\int f(x) \, dx = \sum_{i=1}^n \alpha_i m(O_i)$$

where $f(x) = \sum_{i=1}^{n} \alpha_i \chi_{o_i}(x)$. This integral is clearly linear (with respect to f) and $\int |f(x)| dx = 0$ implies f(x) = 0. If $f(x) \ge 0$ then $\int f(x) dx \ge 0$, finally

$$\int f(x) dx \bigg| \leq \int |f(x)| dx \leq \sup_{x \in V} |f(x)| \cdot \sum_{i=1}^{n} m(O_i).$$

By the well-known development of integral theory we proceed to enlarge the class of integrable functions and its integrals.⁴⁾ First we can prove following two important lemmas:

For every sequence $\{f_n(x)\}$ $(f_n \in \mathcal{O}, n=1, 2, \cdots)$ which decreases to zero almost everywhere, the sequence of values of their integrals also tends to zero.

If for an increasing sequence $\{f_n(x)\}$ $(f_n \in \mathcal{O}, n=1, 2, \cdots)$ the values of their integrals have a common bound, then the sequence $\{f_n(x)\}$ tends almost everywhere to a finite limit.

In this situation, we set \mathcal{P}_1 the class of limit functions of increasing sequence $\{f_n(x)\}$ $(f_n \in \mathcal{P}, n=1, 2, \cdots)$ having a common bound of their integrals. If $f \in \mathcal{P}_1$ and almost everywhere $\lim_{n \to \infty} f_n(x) = f(x)$, where $\{f_n\}$ is defining sequence of f, we define the integral of f(x):

$$\int f(x)\,dx = \lim_{n\to\infty}\int f_n(x)\,dx.$$

This integral does not depend on the special choice of defining sequence of f(x).

Next, we set φ_2 the class of functions which can be expressed by difference of two functions of φ_1 . Its integral is defined as follows:

If $f \in \Phi_2$ is expressed as $f(x) = f_1(x) - f_2(x)$, $f_1 \in \Phi_1$, $f_2 \in \Phi_1$ then:

$$\int f(x) dx = \int f_1(x) dx - \int f_2(x) dx.$$

Further we can prove the Beppo Levi's theorem.

Every increasing sequence $\{h_n(x)\}$ $(h_n \in \Phi_2, n=1, 2, \cdots)$ whose integrals have common bound converges almost everywhere to a limit function $h \in \Phi_2$ and integration can be carried out term by term.

⁴⁾ Cf. F. Riesz and B. Sz.-Nagy: Lecons d'Analyse Fonctionnelle, Académie des Sciences de Hongrie (1952).

As a corollary of this theorem.

Every series $\sum_{n=1}^{\infty} k_n(x)$ $(k_n \in \varphi_2, n=1, 2, \cdots)$ for which $\sum_{n=1}^{\infty} \int |k_n(x)| dx$ converges, converges itself almost everywhere to a function of φ_2 , and the series can be integrated term by term.

Of course the affirming theorems of integrability of a limit function (Lebesgue's theorem, Fatou's lemma) are true. As an application of them we get:

If $f \in \Phi$ and B is a compact set then $f \cdot \chi_B \in \Phi_2$. In fact it is sufficient to show that if $O \in \mathcal{O}$ then $\chi_{\overline{O}_{\frown}B} \in \Phi_2$; in this case we can construct a sequence of open sets $O^{(n)}$, each of which is a union of a finite number of sets $O_i \in \mathcal{O}$, and $O^{(1)} \supseteq O^{(2)} \supseteq \cdots \supseteq O^{(n)} \supseteq \cdots \supseteq \overline{O} \supset B$ and $m\{O^{(n)} - (\overline{O} \supset B)\} \leq 2^{-n}$. Denoting by $f_n(x)$ the characteristic function of $O^{(n)}$, $\{f_n(x)\}$ makes a decreasing sequence of functions of Φ which tends almost everywhere to $\chi_{\overline{O} \supset B}$. Further, if $f \in \Phi_2$ and B is a compact set then $f \cdot \chi_B \in \Phi_2$. And finally, if $f \in \Phi_2$ and B is a Borel set then $f \cdot \chi_B \in \Phi_2$. In fact, the family of set B, for which the proposition is true contains all compact sets and makes a σ -ring, therefore contains all Borel sets.

As a preparation we shall add the last one which concerns Haar measure.

Let B be a Borel set and m(B)=a then for any value $b, a \ge b \ge 0$ there exists a Borel subset $B' \subseteq B$ and m(B')=b. In fact we can assume a > b > 0, we select a natural number n such that a-1/n > b > 1/n, there exist an open Borel set $U: U \ni e$, m(U) < 1/n, and a compact set $C: C \subseteq B$, m(B-C) < 1/n. Since C is covered by a finite number of $U \cdot x$, C contains a Borel set D, $b \ge m(D) \ge b - 1/n$. By the same way, we can find a sequence of Borel sets D_n , $D_n \subseteq D_{n+1}$, $\lim_{n \to \infty} m(D_n) = b$. Therefore $\bigcup_{n=1}^{\infty} D_n$ is a desired set.

§ 2. After this preparation has been established, we shall proceed to a construction of integrals, which is quite parallel to the note of Prof. K. Kunugi.¹⁾

First, we introduce into φ (recall φ is a vector space generated by characteristic functions of sets $O \in \mathcal{O}$) topology and rank⁵⁾ so that they make φ a uniform space and in the same time a ranked space. When positive integer or zero ν and a closed set $F \subseteq V$ are given we define a neighbourhood of the identically zero function 0, $v(F, \nu; 0)$ as the totality of functions f(x) of φ each of which has the following property: f(x) is a sum of two functions of φ :

f(x) = p(x) + r(x)

and they satisfy the following conditions:

⁵⁾ See 2).

 $\begin{bmatrix} 1 \end{bmatrix} \quad r(x) \text{ vanishes for all } x \in F.$ $\begin{bmatrix} 2 \end{bmatrix} \quad \text{We have } \int |p(x)| \, dx < 2^{-\nu}.$ $\begin{bmatrix} 3 \end{bmatrix} \quad \text{We have } \left| \int r(x) \, dx \right| < 2^{-\nu}.$

The neighbourhood of a function $f \in \Phi$, $v(F, \nu; f)$ is defined as the totality of functions $g \in \Phi$ such that $g(x) - f(x) \in v(F, \nu; 0)$.

We can find without difficulty that the neighbourhoods just defined satisfy the following propositions.

(1*) All neighbourhoods $v(F, \nu; 0)$ contain the function 0.

(2*) If two arbitrary neighbourhoods of 0, $v(F_1, \nu_1; 0)$ and $v(F_2, \nu_2; 0)$ are given there exist neighbourhoods $v(F_3, \nu_3; 0)$ such that $v(F_3, \nu_3; 0) \subseteq v(F_1, \nu_1; 0) \frown v(F_2, \nu_2; 0)$.

(3*) For every neighbourhood of 0, $v=v(F,\nu;0)$, we have $v=v^{-1}$.⁶⁾

(4*) For any neighbourhood of 0, $v=v(F,\nu;0)$, there exist neighbourhoods of 0, $w=v(F',\nu';0)$ such that $w^2 \subseteq v^{.6}$

(5*) If $f \in \Phi$ is not identically zero, there exists a neighbourhood of 0, $v(F, \nu; 0)$, which does not contain the function f.

These propositions show that φ is a uniform space.

To define the rank, we shall remark that the sequence of neighbourhoods $v(V, \nu; 0)$ ($\nu = 0, 1, 2, \cdots$) is maximal monotone sequence.⁷⁾ Therefore the depth of the space Φ is ω_0 . The class \mathfrak{B}_{ν} of neighbourhoods of rank ν ($\nu = 0, 1, 2, \cdots$) is defined as the totality of neighbourhoods $v(F, \nu; f)$, $f \in \Phi$ which satisfy the condition

$$m(V-F) < 2^{-\nu}$$
.

Then, we can find that for any neighbourhood of f, $v=v(F, \nu; f)$ and for any rank μ , there exists a neighbourhood u of f such that u is contained in v and the rank of u is higher than μ . Consequently, φ is a ranked space.

We can introduce the notion of fundamental sequence and maximal collections quite similar to Prof. Kunugi.¹⁾

These notions are established, we can prove the following theorems: THEOREM 1. Let $u \equiv \{u_n = v(F_n, \nu_n; f_n)\}$ be a fundamental sequence. Then the functions $f_n = f_n(x)$ tend almost everywhere in V to a function f(x).

THEOREM 2. Let $u \equiv \{u_n(f_n)\}, v \equiv \{v_n(g_n)\}\$ be fundamental sequences which belong to the same maximal collection. Set

$$f(x) = \lim_{n \to \infty} f_n(x), \quad g(x) = \lim_{n \to \infty} g_n(x).$$

Then, we have almost everywhere f(x)=g(x). Therefore, if we identify two functions different only on a set of

⁶⁾ v^{-1} denotes the set of all functions -f such that $f \in v$. $w^2 = w \cdot w$ denotes the set of all functions f = g + h such that $g \in w$, $h \in w$.

⁷⁾ Cf. 2).

measure 0, each maximal collection f^* decides a function. We denote this function $J[f^*]$ and we shall call it a function associated to maximal collection f^* .

PROPOSITION 1. Let $u \equiv \{u_n(f_n)\}$ be an arbitrary fundamental sequence. Then $\int f_n(x) dx$ forms a Cauchy sequence of real numbers. Consequently we can write: $I[u] = \lim_{n \to \infty} \int f_n(x) dx$.

PROPOSITION 2. If two fundamental sequences $u \equiv \{u_n(f_n)\}, v \equiv \{v_n(g_n)\}$ belong to the same maximal collection f^* then I[u] = I[v].

Therefore we can write this common value $I=I[f^*]$.

PROPOSITION 3. Let $u \equiv \{u_n = v(F_n, \nu_n; f_n)\}$ be a arbitrary fundamental sequence, such that $F_n \subseteq F_{n+1}$ $(n=0, 1, 2, \cdots)$, and we set f(x) $= \lim_{n \to \infty} f_n(x)$. Then for every $m, m=0, 1, 2, \cdots$ the function $f(x) \cdot \chi_{F_m}(x)$ belongs to the class φ_2 .

In fact, the sequence of functions $(f_{n'}-f_n)^+\chi_{F_m}$ $(n>m, n'=n, n+1, \cdots)$, each of which belongs to φ_2 , tends almost everywhere to $(f-f_n)^+\chi_{F_m}$, furthermore the sequence of values satisfies $\int (f_{n'}-f_n)^+\chi_{F_m} dx < 2^{-\nu_n}$ $(n'=n, n+1, \cdots)$, and then by Fatou's lemma we have $(f-f_n)^+\chi_{F_m} \in \varphi_2$. Similarly we get $(f-f_n)^-\chi_{F_m} \in \varphi_2$. Therefore $f \cdot \chi_{F_m} \in \varphi_2$.

Let us consider a following property of the fundamental sequence $u \equiv \{v(F_n, \nu_n; f_n)\}$ — in the following we shall call it "property (P)".

(P) There exists a function of n $(n=0, 1, 2, \dots) \phi(n)$ satisfying the following conditions:

 $(1) \phi(n) > 0 \text{ for } n = 0, 1, 2, \cdots$

 $(2) \quad \lim \phi(n) = 0.$

(3) For every Borel set E contained in V and whose measure does not exceed the measure of $V-F_n$, we have $\int |f_n(x)| \chi_E(x) dx \leq \phi(n)$.

 $(4) \quad F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n \subseteq \cdots$

 $(5) \quad \nu_0 < \nu_1 < \cdots < \nu_n < \cdots$

Then we can prove

THEOREM 3. Each fundamental sequence $u \equiv \{u_n = v(F_n, \nu_n; f_n)\}$ which has the property (P) permit to define I[u] as a limit of sequence of integrals:

$$I[u] = \lim_{m \to \infty} \int f(x) \chi_{F_m}(x) \, dx, \quad f(x) = \lim_{n \to \infty} f_n(x).$$

Finally we say that a fundamental sequence $u \equiv \{u_n = v(F_n, \nu_n; f_n)\}$ has the property (P*) if it satisfies, in addition to the property (P), the following condition.

(6) There exists a positive integer k, $k \ge 2$ (independent of n)

No. 1] A Note on the Integration by the Method of Ranked Spaces

which satisfies, for every $n, n=0, 1, 2, \cdots$, the inequality:

$$k \cdot m(V - F_{n+1}) \geq m(V - F_n).$$

If we denote (G) the set of all maximal collection g^* each of which contains at least one fundamental sequence having the property (P*). Then we can prove

THEOREM 4. In the class \mathfrak{G} , the functions $J[g^*](g^* \in \mathfrak{G})$ form a vector space (over the field of real numbers).

Theorem 3 and Theorem 4 together show that in the class \mathfrak{G} , the number $I[g^*]$ is determined not only by g^* but also by the function $J[g^*]$.

Set $J[g^*] = f(x)$. We can write

$$I[g^*] = \int f(x) \, dx.$$

Thus we can construct a new integral for functions defined on a topological group.