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56. On Homomorphic Mappings

By Yoshimichi MiBU
(Comm. by Z. SUETUNA, M.J.A., May 13, 1958)

In the theory of real valued functions we have

“Theorem A. Let R be the space of real numbers and f(x) an
additive function defined on R. If f(x) is measurable (with respect
to the Lebesgue measure), then f(x) is continuous”.

This is a well-known theorem. It will be natural to propose the
following question, in connection with the above theorem:

“Let G and G* be two topological groups and ¢(x) a homomorphic
mapping of an abstract group G into an abstract group G*. Under
what conditions does it follow that ¢(z) is a continuous mapping of the
topological group G into the topological group G*”?

It is the purpose of the present paper to answer this question.
First we shall extend Theorem A to a more general case (see Theorem 1).
This generalization is the first answer for the above question. Next
we shall prove a theorem (Theorem 2) which is the second answer for
the above question. And we have, using our Theorems 1 and 2 and
the duality theorem of Pontrjagin, an interesting consequence (see
Theorem 3).

Definition 1. Let G be an abstract space and m* an outer measure
in G. Let f be a mapping of G into a topological space £. f is
called an m*-measurable mapping if the set f~-'(U) is m*-measurable
for every open set UZ Q.

Definition 2. Let G be a topological space. Let f be a mapping
of G into a topological space £. f is called a mapping which has the
property of Baire if the set f~!(U) has the property of Baire for every
open set UC Q.

Definition 8. Let G be a topological group. G is called to be
o-bounded, if for every open set U G there exists a sequence a,

Qg+ +, Ay - of elements of G such that G= GaiU.
i=1

Theorem 1. Let G be a locally compact group and m* a left-
invariant Haar’s outer measure in G. If f is an m*-measurable homo-
morphic mapping of G into a os-bounded topological group G*, then
f is continuous.

Proof. Let H*=f(G). If we introduce the relative topology in
H*, then H* becomes a s-bounded topological group. For the proof
of our theorem it is sufficient to show that f is a continuous mapping
of G into H*. Let U* be an arbitrary neighborhood of the identity



242 Y. Misu [Vol. 34,

e* of H*. There exists a neighborhood V* of e* such that V*-'1V*cC U*.
Let V=f-(V*). From Definition 1 we see that V is m*-measurable.
We shall show that m(V)>0. There exists a sequence a,af,---,ak,- -

of elements of H* such that H*= Ga;“ V*. We set V,=f"Ya}V*),

i=1
©=1,2,-.+ . Then it is easily seen that each V, is written in the form
a;V, where a, is an arbitrary element of f-'(af). Hence we have

G= iljl a;V. From this we can easily see that m(V)>0. There exists

a neighborhood W of the identity e of G such that W V-1V (this is
the well-known fact in the theory of Haar’s measure). Thus we have
SIS f(V-V)S V*-1V*Z U*. This shows that f is continuous at e.
On the other hand f is a homomorphic mapping of an abstract group
G onto an abstract group H*. Hence f is continuous at all points.

Corollary. Let R be the space of real numbers. And let f(x)
be a real-valued function defined on R such that f(x+y)=f(x)+/(¥).
If f(x) is a Lebesgue-measurable function, then f(x) can be written
in the form f(x)=2ax.

Lemma 1. Let G be a topological group whose open sets are all
of the second category. And let MG be a subset which has the
property of Baire. If M is of the second category, then M~*M con-
tains a neighborhood V of the identity e¢ of G.

Proof. Since M has the property of Baire, there exists an open
set U such that the symmetric difference Mo U is of the first cate-
gory. On the other hand M is of the second category, and hence
we can easily see that U0. We take an arbitrary element a of U.
There exists a neighborhood V of the identity e such that

(1) VV-ica 'U.
We set K=MoU. Then we have
(2) VeVV-icae'USa 'M—a'K.

Let b be an arbitrary element of V. From (1) we have
(3) Vb 'Cae'UZa 'M~a 'K, that is, VS a 'Mb-—a 'Kb.
Since V is of the second category and both a 'K and o 'Kb are of
the first category, it is evident that (using (2) and (8))
(4) (@M ~a"*Mb)~ V=0, that is, M~Mb=-0.
This implies that for an arbitrary element b ¢ V there exist elements
ceM and deM such that c¢=db, that is, d 'c=b. Hence we have
M-'M2V.
By using Lemma 1, we can also prove Theorem 2 below.
Theorem 2. Let G be a topological group whose open sets are
all of the second category. And let f be a homomorphic mapping
of G into a o-bounded topological group G*. If f has the property
of Baire, then f is continuous.
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Theorem 3. Let G be a separable and locally compact abelian
group. Suppose that G is not discrete. Then there exists at least
one set B, =G which is not measurable with respect to the Haar
measure in G. And further there exists at least one set E,= G which
does not have the property of Baire.

Proof. We introduce the discrete topology in G and denote this
topological group by G*. Let X and X* be the character groups of
G and G* respectively. Then X is a separable and locally compact
abelian group and X* is a compact abelian group. Clearly an element
x €X can be regarded as an element y*eX*. To every xc¢X we
correspond such an element x*eX*. Then we have a mapping Y(x)
=x* of X into X*. It is easily seen that Y(x) is a continuous homo-
morphic mapping of the topological group X into the topological group
X*. We shall show that ¥(X)=X*. Suppose that ¥(X)=X*. Then
¥-! is also continuous. (This is a well-known fact in the theory of
topological groups.) Hence X is homeomorphic with X* and con-
sequently a compact group. This implies that G is discrete. (Remember
the duality theorem of Pontrjagin.) Thus we have arrived at a con-
tradiction. Hence there exists a x*e X* which does not belong to
Y(X). Clearly x* is a homomorphic mapping of an abstract group G
into an abstract group K (K is the factor group R/N, where R is the
additive topological group of real numbers and N is the subgroup of
all integers). But this is not a continuous mapping of G into K. Hence
by Theorem 1 x* is not a measurable mapping (with respect to the
Haar measure in G) of G into K, and by Theorem 2 x* is not a
mapping which has the property of Baire. Consequently x*-'(U) is
non-measurable for a certain open set US K and x* (V) is a set
which does not have the property of Baire for a certain open set
V< K. Setting E,=x*"%U) and E,=x*"V), we obtain our theorem.

Lemma 2. Let R be the space of real numbers. Then there
exists a set B with the properties:

1) For every zeR there exists a finite subset {x,, «,,---,2,} of
B and a corresponding finite set {r,, r,,- .-, 7,} of rational numbers such

that x= é 7L,
i=1

2) B is linearly independent with respect to rational coefficients,

that is, r,x, 472+ -+ +7,2,=0 implies r,=7r,=-..=7r,=0 for every
finite subset {x,, %5, - -+, x,} of B and a finite set {r,, - -, r,} of rational
numbers.

This is well known. B is called a Hamel basis. It is easily proved
that every linearly independent set (in the sense of rational coefficient)
is contained in a Hamel basis.

Example. Let R be the space of real numbers. There exists a
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subset G R satisfying the following three conditions:

1) G is an abstract subgroup of R.

2) G is a non-measurable (in the sense of Lebesgue) set of E.

3) @G is a set which does not have the property of Baire.

Proof. Let B be a Hamel basis containing 1. Let H be the sub-
group of the rational numbers and G the subgroup which is generated
by the rational linear combinations of elements of B—{1}. Then it is
easily seen that R is decomposed into the direct sum of H and G.
Hence every element x¢ R is written in the form x=h-+g, where he H
and gc¢G. We define f(x)=g, for x=h+g, heH, ge¢G. Clearly f(x)
is a homomorphic mapping of R into itself. It is not hard to show
that f(x) is not continuous. Hence by Theorem 1 f(x) is not measur-
able. And by Theorem 2 f(x) is not a function which has the property
of Baire. Then we can easily prove that G satisfies the above con-

ditions 2) and 8). (Notice that H=N,.)



