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1. Introduction. Let ¢(t) be an even function, integrable in
(0, =), periodic of period 2w, and let
@(t) ~—;- a,+ i a,, cos nt
n=1
and
sn=l Qo+ 1 a,.
2 v=1

Hardy and Littlewood [1] proved the following
THEOREM A. If

¢ _ _ 1 >

(1.1) f [ (u) s|du—o(t/log7 (t—0),
and if for some positive §

1.2) a,>—An"°% A>0,

then s,—>s.

The proof requires a very difficult Tauberian theorem, and so
later Szdsz [2] gave an alternate proof under the additional condition
| p(t)—s|<t~° ¢ a positive constant.

Recently, Wang [3] and Sunouchi [4] proved Theorem A by the
method of Riesz summability, and the latter’s extension is as follows:
THEOREM B (Sunouchi). If

f tl p(u)—s Idu=0(t/f (%)) (t—>0),

and if a,>—u(n, A) for some positive 4, then s,—s, where f(x) and
u(x, A) are defined by the conditions 1° f(x)>0, f'(x)>0, 2° F(x)=

f "Quf @) dut o as x4 oo, and 3° u(x, A)=1/F-(F(z)—A).

In this paper, we shall first give an another proof to Theorem
A Dby the method of de la Vallée Poussin summability, and generalize
it in alternate form slightly different from Theorem B. In §8 we
refer to jump functions.

THEOREM 1. If (1.1) holds, and if for some positive &
(1.8) 8piv—8,>—¢, for v=12,..., [n%],
where ¢,>0 and ¢,—0, then s,—>s.

Observing that ¢,—0 may be as slowly as we wish, Theorem A
is a corollary of Theorem 1 since (1.8) holds whenever a,>—An=°",
¢>0, which is (1.2) replaced § by 8+-¢,
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Definition 1. We define g(x) such as 1° g(x)>0 for x=x,>0,
2° g(x) 4 0 as x4 oo, and 3° H=Zg(x%)/g(x)<1, 0<8<1, for all x>,
where H=H(S8) is a positive constant depending on & only.

We may take for g(x), e.g. (log 2)*(a>0), log « log log  and log, «,
where log, is the p-times iterated logarithm. For the sake of simplici-
ty we denote (g(x))* by g(x)* throughout this paper.

THEOREM 2. If

¢ _ 1
(1.4) [|go(u) s| du—o(t/logg<-t—>> (t—>0),
where g(x) is defined by Definition 1, and if for some positive 4
(1.5) Sy —8,> —¢, for v=12,--., [n/g(n)*], (n=n,),*

where ¢,>0 and ¢,—>0, then s,—>s.

COROLLARY 2.1. If (1.4) holds, and if for some positive 4
(1.6) a,>—An"'g(n)*, A>0, (n=mn,),
then s,—>s.

Again observing that ¢, may tend to zero arbitrarily, this follows
immediately from Theorem 2 since (1.6) implies (1.5) replaced 4 by
4+1. This corollary will correspond to Theorem B.

COROLLARY 2.2, Let p be a positive integer. If

[L| p(u)—s| du=o<t/log'p+l%> (t—0),

and if a,>—An"'(log,n)*, n=n, for some positive 4, then s,—>s.
This follows from Corollary 2.1 by letting g(x)=log, .
2. Proof of Theorems 1 and 2. We need some lemmas. Let
m<n, then we have the two identities:

(2'1) sn=l§sn+v_li(sn+v_‘sn),
mv=1 m v=1

22) B STRNEES 3 [P R}
mv=1 m v=1

Here we suppose that m=m(n) tends to infinity with », and is as
same order as or lower order than n. If

.1 .1z
lim = 3 s,,,=lim = > s,_,=s,
n>00 M V=1 nyo0 M, V=1
and if s,.,—s,>—e¢, for »=1,2,-.-,m, where ¢,>0 and ¢,—~0, then

from (2.1) and (2.2) we have
limsups,<s and liminfs,>=s

n-»o0 7-»c0

respectively, and then lim s,=s.
On the other hand, denoting by D,(¢) the Dirichlet kernel,

*) Hssentially n, may be expressed by @, in Definition 1, and is an absolute
constant depending on the function g(x) only.
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2 sm (n+1/24v)t
=2 f @(8) Do (1) db =2 f dt,

2 gin (t/2)
and so we have
—st—— f 73(;‘:11(%/22)))2 (n+ 1,1 (m+1))t dt.
It is analogous to the mean m 'S8, .
Hence we get the following
LEMMA 1. Let m=m(n)<n tend to infinity with » as same order
as or lower order than n. If

2 [ p(onat) de=s+o() (> oo),
where ’
23)  x.B)=xi(m, t>~i(§-% in(n+-La Lom 1))t
and if
(2.4) Spiv—8,>—¢, for v=12,...,m,

where ¢,>0 and ¢,—~0, then s,—>s.

Clearly, in this lemma the condition (2.4) may be replaced by
(2.5) a,> —¢&,/m.

LEMMA 2. The kernel x,(t)=xi(m,t) defined by (2.3), m being
lower order than m, has the following properties:

2.6) 2 ["x.mat=1,
om)  (O=t=m)
@7) Xalt)= { o(1/t) (nt=1)
O(1/mit?) (mt > 1).

Indeed (2.6) follows from
)=~ 31 Dust) and 2 [T D, (t)dt=1,
m v=1 Lo A

and (2.7) does from the expression of x,(t) in (2.3).
Proof of Theorems 1 and 2. By Lemma 1 it is sufficient to show
that

2.8) I= f " ()X B)dt =T s+0(1) (n—> o),

where x,(t) is defined by (2.8). And we may suppose that s=0 with
no loss of generality by (2.6). We divide I into three parts

-1 m~1 P
I= + + =L+L+1,
S+l
say, where we put m=[n%], 0<8<1, in Theorem 1, and m=[n/g(n)*]

in Theorem 2. The assumption (1.1) in Theorem 1 or (1.4) in Theorem
2 implies f | p(u) | du=o0(t). And since x.(t)=0(n) by (2.7),
0
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L= " oy dt=0(n " | p(t) | dt )=o(nn-)=o(1)
Further, sinoce x.(t)=01/mt*) for mt=1 by (2.7),
_ (" —ofl (le®] :\_
1',3_f_1 o(t) x,,(t)dt—-0<-7zj:l ——"%——dt)-o(l).

Next, using x,(t)=0(1/t) for nt=1 in (2.7),
_ (" —of [ Le®|
(2.9) L= [l (1) x.(0) dt_0< [ ; dt).

Concerning Theorem 1, the condition (1.1) is written as f t];o(u)]du:
0

o(t/log t~1), and so applying integration by parts to the right hand side
integral in (2.9)

nefome )] vt )

n—

=o0(1) +o[ —log log —1—]".‘1

n—-1

.-:o(l)—l-o(log' 11:))::@ ), m=[n%],

=o(1)+o<log—;—)=o(1).

(2
Concerning Theorem 2, the condition (1.4) is written as f | p(u)| du=
0

o(t/log g(t~1)), and so as above
n=[oane o 1)) ol [ (anton (1)
=o(1)-+o{(og gom) [ 4L

=o(1)-+o{(log g(m))"* log ), m=[njg(n)"],

=0(1)+o((log g(n))~'4-log g(n))=o0(1).
Thus I, I, and I; are all o(1), and we get (2.8) with s=0, which
proves both the theorems.
3. Jump functions. Let Y(t) be an odd function, integrable in
(0, ), periodic of period 2w, and let

n

V() ~b, sinnt and £,= Slub,.
n=1

V=1
Then we have the following theorems:
THEOREM 3. If there exists a number ! such that

(3.1) of |9 (u)—1 | du=o (t/log _}) (t—0),
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and if for some positive &
n Yty —t,)>—e, for v=12,--.,[n%],

where ¢,>0 and ¢,—0, then the sequence {nb,} is summable (C, 1) to
21/,

CoroLLARY 3. If (3.1) holds and if for some positive 8,

b,>—An"%, A>0,

then the sequence {nb,} is summable (C, 1) to 2I/=.

This follows from Theorem 3 like as Theorem A does from Theorem
1. This corollary is a generalization of a theorem due to Mohanty-
Nanda [5] in which the latter condition is replaced by b,=O0(n"°%).

THEOREM 4. If there exists a number [ such that

¢ 1
(3.2) f | ¥ —1|du=o( tflog g(-1)) (t—0),
where g(x) is defined by Definition 1 in §1, and if for some positive 4
n-l(t'n+v—tn)> —&, for v= 1»27 ) I:n/g('n)A]r (’ﬂ; no),

where ¢,>0 and ¢,—0, then the sequence {nb,} is summable (C, 1) to
21/,
COROLLARY 4. If (3.2) holds, and if for some positive 4
b,>—An"'g(n)*, A>0, (n = ny),
then {nb,} is summable (C, 1) to 2l/=.
Proof of Theorems 38 and 4. Using the identities
t, 1

e ey R +1) S ()
and . ) -
. - Sttt 3 (),

n+1  (n+)m = (n +1)
where m=[n%], 0<8<1, or m= [n/g(’n)A], it is sufficient to show that
(8.3) L= n +1)m 2} m=——+0(1) (n—> o0),
by Lemma 1. On the other hand, since

2 (= . 2 [, . d
b, == t tdt=—=2 t) — t dt,
Y mf W(E) v sin » mf W(t) o8 »

t, is written as

t=3b==2 [Ty L D0
Substituting this into the expressmn of I in (3.3) we have
. I=—%= 2 (0 dt,
(3.4 RG220
where x,(t)=x2(m,t) coincides with that in (2.3), i.e.
(3.5) () =—28n(mt2) (n+—:c_(m+ 1)>t.
" m(2 sin (£/2)) 27 2

And, (n+1)"'(d/dt) x,(t) has all the properties of x,(t) in (2.7), i.e.
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1 O(n) (0=t=m)
n+1 dt Gx0= {0(1/0 (nt=1)

O(1/mt*)  (mt=1).
Now, I, in (3.4) is

L=— 2[(«1«) D Lot dt

36) -|-1 dt

21 1
—= —— 2y ®)dt=K,+K,,
™ n+1 di Xn() 1+ K

say. Then, we see that K;=o0(1) under the respective conditions in

Theorems 3 and 4 quite analogously as the proof of Theorems 1 and
2. Concerning K,

- ____ - 2l 1
K,= [x.(O] ,=o(1)+ | X.(0)
1 1
=o(1 >+ —= (n+§i3<m+1>) by (3.5),
=—i_l—+o(1).

Hence, (3.3) follows from (3.6), and we get the desired results.

Finally, I wish to express my heartfelt gratitude to Professors
S. Izumi and G. Sunouchi for their many suggestions and advices.
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