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1. Introduction. Let co(t) be an even function, integrable in
(0, rr), periodic of period 2rr, and let

1go(t) a0+ .=a cos nt

and
1 ao+a8n- =i

Hardy and Littlewood [1_ proved the following
THEOREM A. If

.) f,co(u) --s du-o(t/logT)l (t--O),

and if for some positive 8
(1.2) a,>--An-% A>0,
then s, s.

The proof requires a very difficult Tauberian theorem, and so
later Szsz [2] gave an alternate proof under the additional condition

(t)-s < t-, c a positive constant.
Recently, Wang [3] and Sunouehi [4] proved Theorem A by the
method of Riesz summability, and the latter’s extension is as follows:

THEOREM B (Sunouehi). If

and i2 a>-(n, A) or some positive A, then ss, where f(x)and
(x, A) are defined by the conditions 1

 (1/uf(u)) asdu nd 3 1
In this paper, we shall first give an another proof to Theorem

A by the method o de la ValiSe Poussin summability, and generalize
it in alternate form slightly different from Theorem B. In 8 we
refer to jump unctions.
Tos 1. I (1.1) holds, and

(1.3) &+;--s>-s or ,=1,2,...,[n],
where &>0 and &0, then ss.

Observing that &0 may be as slowly as we wish, Theorem A
is a zorollary o Theorem 1 since (1.8) holds whenever a>--An--,
>0, which is (1.2) replaced 8 bx
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Definition 1. We define g(x) such as 1 g(x);>O for xx0:>0,
2 g(x) as x , and 3 H_ g(x)/g(x) 1, 0 < ;< 1, for all x :> x0,

where H=H() is a positive constant depending on $ only.
We may take for g(x), e.g. (log x)(a> 0), log x log log x and logp x,

where logp is the p-times iterated logarithm. For the sake of simplici-
ty we denote (g(x)) by g(x) throughout this paper.

THEOREM 2. If

((1)) (t->0),(1.4) [cp(u)--s[ du=o t/logg -where g(x) is defined by Definition 1, and if for some positive /

(1.5) Sn+.--Sn>--e for v--1,2,..., [n/g(n)], (nno),*)

where s>0 and Sn-->0, then s--s.
COROLLARY 2.1. If (1.4) holds, and if for some positive A

(1.6) an:> --nn-lg(n), A>0, (n no),
then Sn -’-> S.

Again observing that e may tend to zero arbitrarily, this follows
immediately from Theorem 2 since (1.6) implies (1.5) replaced A by
A+ 1. This corollary will correspond to Theorem B.

COROLLARY 2.2. Let p be a positive integer. If

( 1) (t-> 0),cp(u)-- s du- o t/log/1-
and if an>--An- (log n), nno, for some positive /, then s-+s.

This follows from Corollary 2.1 by letting g(x)-log x.
2. Proof of Theorems 1 and 2. We need some lemmas. Let

re<n, then we have the two identities:

(2.1) s 1 s+---- +

(2.2) s= 1 sn_-+- 1 -,(sn 8n_’)
m= m

Here we suppose that m-re(n) tends to infinity with n, and is as
same order as or lower order than n. If

lim --1 Sn+--lim 1 s_--s,

and if s+--s>-- for --1,2,..., m, where end0 and s0, then
from (2.1) nd (2.2) we have

limsupss and liminfss
respectively, and then lim Sn--S.

On the other hand, denoting by DE(t) the Dirichlet kernel,

*) Essentially n0 may be expressed by x0 in Definition 1, and is an absolute
constant depending on the function g(x) only.
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f  (t)sin (n+ 1/2+,)t tit,s,+=-- c(t)D,+(t) dt=--
r 2 sin (t/2)q’/"

and so we have

f 2sin(rot sin(n+l )__1 , s,+ 2 (t)
m(2 sin (t/2)) -+ (m+ 1) t dt.

’= 7r

It is analogous to the mean m- s,_.
Hence we get the following
LEMMA 1. Let m--m(n)<n tend to infinity with n as same order

as or lower order than n. If
2__ p(t)(t)dt-s+o(1) (n--> o),

where

(2.8)

and if
(2.4)

2 sin (mt/2) sin (n 1 1 1)tx(m, t)- +-+_-(n+m(2 sin (t/2))

s,+--s>--e for -1,2,...,m,
where > 0 and e--> 0, then s S.

Clearly, in this lemma the condition (2.4) may be replaced by

(2.5) a> -Jm.
LEMMA 2. The kernel :g(t)-:3(m, t) defined by (2.3), m being

lower order than n, has the following properties"

f(2.6) 2 x(t)dt--1,

O(n) (0 t )
(2.7) x(t)-- 0(1/t) (nt 1)

O(1/mt) (rot > 1).
Indeed (2.6) follows from

:,(t)-1__ ] D,,(t) and Dn(t) dr-- 1,

and (2.7) does rom he expression o (t) in (2.8).
Proof of Theorems 1 and 2. By Lemma 1 it is sufficient to show

that

(2.8) I cp(t)(t)dt-- Tr s+o(1) (n-> ),
2

where x(t) is defined by (2.3). And we may suppose that s=0 with
no loss of generality by (2.6). We divide I into three parts

z= +f +
n--1 m--1

say, where we put m-- [n, 0< 8< 1, in Theorem 1, and m- [n/g(n)-]
in Theorem 2. The assumption (1.1) in Theorem 1 or (1.4) in Theorem

2 implies Io(u) ldu o(t). And since )(t)-O(n) by (2.7),
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Further, since (t)-O(1/mt) for mt 1 by (2.7),

Next, using Xn(t)--O(l/t) for ntl in (2.7),

--1 --1

Coneerning heorem 1, the condition (1.1) is written as

o(t/log t-), and so alying integration by ars to the righ hand side
integral in (2.9)

=o(1)+o[--log log-1
=o(1)+o log.

log m
1

Concerning Theorem 2, the condition (1.4) is written as i(u)]du-

o(t/log g(t-)), and so as above

=o(1) +o((,og
=o(1)+o((log g(n))-’ log ), m--[n/g(n)],

m

=o(1) +o((log g(n))-*d log g(n))=o(1).
Thus I, I and Is are all o(1), and we get (2.8)with s-0, which

proves both the theorems.
3. Jump functions. Let (t) be an odd function, integrable in

(0, ), periodic of period 2, and let

@(t)bsinnt and t=
Then we have the following theorems:

THEOaEM 3. If there exists a number such that

(3,1) f’ o
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and if for some positive

n-(t./-t) > for , 1,2,..., F_n,
where e.:>0 and e-0, then the sequence {nb} is summable (C, 1) to
2l/r.

COROLLARY 3. If (3.1) holds and if for some positive ,
b>--An-, A>O,

then the sequence {nb} is summable (C, 1) to 21/r.
This follows from Theorem 3 like as Theorem A does from Theorem

1. This corollary is a generalization of a theorem due to Mohanty-
Nanda 5] in which the latter condition is replaced by bn--O(n-).

THEOREM 4. If there exists a number such that

where g(x) is defined by Definition 1 in 1, and if for some positive A
n-l(t.+--tn) > e for ,-- 1,2,. ., [n/g(n)], (n no),

where e> 0 and e 0, then the sequence {nb} is summable (C, 1) to
21/.

COROLLARY 4. If (3.2) holds, and if for some positive

b, > An-g(n), A> O, (n no),
then {nbn} is summable (C, 1) to 21/.

Proof of Theorems 3 and 4. Using the identities

n+l (n+l)m t+-- (n+l)m ’ (t+--t)
and

n+ (n+ 1)m
t._

(n+ 1)m
(t-- t_),

where m= In’I, 0<8< 1, or m= n/g(n)], it is sufficient to show that
1 +o(1)(s’a)

(n+ 1)m
by Lemma 1. On the other hand, since

b,- (t) u sin t gt-- (t) eosd ut gt,

t is written as

8ubsgituting this into the expression of I in (8.8) we have

n+l dt
where X(t)-x(m, t) coincides with that in (2.3), i.e.

2 sin (mt/2) sin (n+ 1 1 (m+ 1))t.(3.5) Xn(t)--
m(2 sin (t/2))

And, (n+l)-(d/dt)x(t) has all the properties of X(t) in (2.7), i.e.
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1 d
n+l dt

Now, I. in (3.4) is

),(t)- O(1/t)
O(1/mt)

(Ot)
(nt 1)
(mt 1).

In-- 2 (4(U)-- l) 1 d %n(t) dt
r n+l dt

(3.6)
_2/P 1 d
r J n+----- d-- n(t) tit--K+g.,

say. Then, we see that K-o(1) under the respective conditions in
Theorems 3 and 4 quite analogously as the proof of Theorems I and
2. Concerning

K. 2l 1 t 21 1
r n+l r n+l

=o(1)+ 2/ 1 (n+l ---12 )r n+ 1 --+/- (m+ 1) by (3.5),

= 2A
Hence, (3.3) follows from (3.6), and we get the desired results.

Finally, I wish to express my heartfelt gratitude to Professors
S. Izumi and G. Sunouchi for their many suggestions and advices.
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