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1. Many mathematical models would be employed by von Neu-
mann in his investigation on the rings of operators. The theories of
quantum mechanies, infinite groups, integration, measure preserving
transformations and so on would be found among them. However,
the classical theory of simple algebras would play an eminent role in
his monumental “rings of operators” series, since the von Neumann
algebras are recognized by himself as an infinite dimensional hyper-
complex numbers in his earlier paper.

In this point of view, it is curious that the notion of crossed
product is paid a little attension in the literatures, although it plays
an essential role in the theory of simple algebras. As the authors
concern, the first abstract definition of the crossed product of von
Neumann algebras is introduced by Turumaru in 1955 by a seminar
conversation, who also pointed out that the examples of factors due
to Murray-von Neumann [2] is nothing but the crossed product of an
abelian algebra by an ergodic automorphism group. However, the
further development delayed, since no security existed that the crossed
product of a factor produces an another new one.

In the succeeding paper [8], it will be proved that the crossed
product of the hyperfinite continuous factor is not isomorphic to the
original when the group of automorphisms is suitably restricted.
Therefore, the purpose of the present note is to develope some ele-
mentary properties of the crossed product of a finite factor along the
line that some well-known theorems of simple algebras are still valid
for finite factors. Incidentally, in the end of the note, a theorem of
Murray-von Neumann concerning the example construction will be
given an alternative simpler proof basing on the same idea.

2. At the beginning, we may make a few remarks. The termi-
nology of J. Dixmier [1] will be used without any explanation unless
the contrary is stated (for example, von Neumann algebra and the
hyperfiniteness will be used instead of W *-algebras and the approximate
finiteness respectively). Moreover, each von Neumann algebra of the
present note will be assumed to act on a separable Hilbert space.
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We shall begin with a few preliminaries about the automorphisms
on certain von Neumann algebras. Since *-operation is considered as
an algebraic operation on the algebras, automorphisms mean always
x-gutomorphisms in this paper. An automorphism g of a von Neumann
algebra A is outer if there exists no unitary operator ue A such that
x'=uxu* for xeA («’ is the image of = due to the automorphism g).
A group of automorphisms is outer if every automorphism except the
unit is outer. Then the following lemma, which is clearly a direct
analogue of a classical theorem on simple algebras, is fundamental in
the present note:

LemMMA 1. If A is a finite factor with an outer automorphism
g, and if
(1) Ya=ax,
for all xeA, then a vanishes.

Proof. (1) implies that /=aA is a two-sided ideal. By the well-
known proposition of von Neumann [4, p. 25 a finite factor is simple,
whence I=A unless a=0, and so a is regular unless a=0. This im-
plies, by a proposition of Dixmier [1, p. 157 that the automorphism g
is inner, which is a contradiction unless a=0.

An abelian analogue of Lemma 1 is the following

LEMMA 2. If A is an abelian von Neumann algebra with an
automorphism g, then the set I of all a which satisfies (1) for any
xeA 1s a closed ideal element-wise invariant under g. Therefore, if
moreover g is ergodic in the sense that the imvariant elements of A
are only the scalars, then I vanishes.

Proof. It is not difficult to see that I is a closed ideal which
does not contain the scalars whenever g is non-trivial. By (ab)’=a’’
=a’b=ab for a,bel, it is obvious that I? is element-wise invariant
under g. By the well-known theorem of Segal I? is dense in I,
whence I is element-wise invariant. The remainder of the lemma is
now obvious.

In §5, Lemma 2 will be used as an alternative of [2, Lemma 12.2.3].

3. Following after Turumaru [6], we shall introduce the crossed
product GQRA of a von Neumann algebra A4 with a faithful normal
trace r by an enumerable group G of outer automorphisms.

Conveniently we denote a function on G with the value a, in A
at g by 2,9®a,. Let D be the set of all functions 3, g®a, such that
a,=0 except a finite number of ¢’s. Besides the usual addition and
scalar multiplication the following operations will be introduced in the
set D:

(2) (2, 9®a)(2h®b)=2,, ,9h® ajbs,
(3) (2,0Q0,)*=3,9"'®a *.
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It is not hard to show that D is a x-algebra by the above computa-
tion rules. For the convenience, A and G will be considered as the
subsets of D identifying ¢ and g with 1®a and g®1 respectively
(especially, 1®1 is considered as the identity of A and G). In D, a
trace r which is the extension of the given trace of A will be intro-
duced by
(4) g®a)={"" fox 9=1,

0 otherwise,
(5) (2, 9®a)=2,7(9®a,).
Turumaru proved that ¢ is faithful on D, and that the Gelfand-
Neumark representation space by ¢ is nothing but GX®H in the sense
of Umegaki [7] where H is the standard representation space of A
by its trace, and consequently that D is faithfully represented on GQH.
Turumaru defined that the crossed product GQRA of A by G (in 7)
is the weak closure of D on GRH (naturally, the C*-crossed product
is also defined by the uniform closure of D which is not the subject
in the present note). Since r is a faithful trace on D, GRA is of
finite type and embedded in GRH.

Since an element of G®A can be considered as an element of
G®H, it has an expression ¥, 9®Fk,(k,eH) which will be called the
Fourier expansion and each k, will be called the g-th Fourier coefficient
or simply g-coefficient. Clearly, k, is uniquely determined by the given
element. For a pair of elements of GQRH whose all coefficients a, and
b, belong to A embedded in H, the inner product will be described by
the following

(6) <Zyg®ay|Zhh®bh>=zat(aab;k)'
especially the Hilbert space norm is
(7) ”209®aq”g=207(a9a3‘)'

These will be considered as a generalization of the results of [2, § 12.4].
In the next section, it is shown that all g-coefficients of an element
belonging to GRA are in A.

4. For the convenient use in the below, we shall here introduce
and make a few remarks about the (conditional) expectation due to
Umegaki [8], which is an operation defined on a finite von Neumann
algebra A with a faithful normal trace r. If B is a (weakly closed
self-adjoint) subalgebra of A, then the expectation conditioned by B is
a mapping *—>x* from A into B satisfying
(8) (2 y)=1(xy) for all yeB.

Umegaki observed that the expectation is a positive linear normal
transformation of A onto B which satisfies moreover

(9) (xy) =z"y =(xy")",

or equivalently, the B-module homomorphy;

(10) (xb)* =2*b, (bx)*=ba* for any beB.
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Umegaki characterized it conversely that a positive linear normal
idempotent B-module endomorphism of A is the (conditional) expecta-
tion conditioned by B, which is recently sharpened by Tomiyama [5]
that the expectation is a projection of norm one having the range B
and satisfying (10).

An another nature of the conditional expectation is a projection
of the standard representation space H (by r) whose range is the
metric hull of B. This statement follows from the following two
relations:

[z [|3=]c(x"a"*) | =] c(ez™*) | < c(wa*)bo(a a")E,
(et |yy=c(@ y*)=c(@ y**)=r(ay**)={x|y").

Since G®A has a faithful normal trace by the above, each (von
Neumann) subalgebra B allows the expectation conditioned by B,
especially there exists the expectation ¢ conditioned by A itself. Since
a, is the expectation of X,g®a, of D conditioned by A, that is,
(2,9®a,)=a,, the strong or weak continuity (in the unit sphere)
of the expectation (cf. [8]) implies that the above equality is valid
for all elements of G®A, whence the 1-coefficient of an element of
G®A belongs to A. From this it follows that the g-coefficient of an
element 3,9 ®a, of GRA belongs to A since g7 (2, h®a,) belongs to
GRA.

Lemma 8. If B is a finite factor with a subfactor A, G is an
enumerable group of unmitary operators of B each of which induces
an outer automorphism x'=g*xg of A unless g=1 and furthermore
A and G generate B, then B=GRA.

Proof. By the assumption, x‘9°=g‘c where ¢ is the expectation
conditioned by A for any element x of A, whence Lemma 1 implies
9‘°=0, and so B and G are orthogonal in the sense that

(g|by=1(gb*)=0
unless g=1. Hence (4) is satisfied by ga, instead of g®a,. There-
fore the correspondence ga,<g@®a, gives an isometry between the
metric hull of B and G®H. Since the computation rules (2) and (3)
are satisfied by Y, 6 ga, instead of Y ,g®a, these imply the spatial
isomorphism between B and G®RA.

We shall finally notice that Lemma 38 shows the regularity of A
(in the sense of Dixmier) in its crossed product GRA.

5. Now, we are able to trace the analogy between the crossed
products of finite factors and simple algebras (of finite rank). First
at all, we shall prove the following

THEOREM 1. The crossed product of a finite factor by an enumer-
able group of outer automorphisms is also a finite factor.

Proof. Obviously, we need only to show that G®A is a factor.
If e is a non-trivial central projection of G®A, with the g-coefficient
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a, then the g-coefficient of ze and ex coincides for any xcA, that
is, #’a,=a,& for all x¢A. By Lemma 1, hence a,=0 unless g=1,
which is clearly impossible.

REMARK 1. The theorem seems to state for all finite factors,
however, I, factors are automatically excluded since they have no
outer automorphisms by a theorem of Kaplansky. Compare with
Remark of Theorem 4 of [3].

REMARK 2. A proof of the theorem is recently obtained by N.
Suzuki, who seems the first to prove the theorem. Although Suzuki
and the authors proved it independently, it seems to the authors that
their proofs are same in spirit.

THEOREM 2. If A is a finite factor with an enumerable outer
automorphism group G, then each von Neumann subalgebra B of GRA
containing A is the crossed product FRA of A by a subgroup F of
G up to isomorphism.

Proof. Let h* be the expectation of heG conditioned by B
(where & is seen as an element of G®A), and let a, be the g-coeffi-
cient of 2*. Then

xh* =(xh)* =(ha") =h*x" for each xcA
implies a,=0 by Lemma 1 comparing their g-coefficients unless g=h.
Hence either A=h*c¢B or h*=0. Let F be the set of all k¢ B. Then
it is obvious that F is a subgroup of G. The remainder of the proof
follows from Lemma 8 or the direct application of the definition.

THEOREM 8. In the crossed product GRA of a finite factor A
with an enumerable outer automorphism group G, the lattice of all
subfactors containing A is isomorphic to the lattice of all subgroups
of G.

Proof. Since by Theorem 2 each subfactor B containing A is the
crossed product of A by a subgroup F of G, and since each subgroup
F produces a subfactor FQA by Theorem 1, subfactor containing A
corresponds to subgroup of G. By Theorem 2, the correspondence is
determined by the inclusion FF<<B and the generation, it is clearly
one-to-one. This proves the theorem since the order is clearly pre-
served under the correspondence.

6. Incidentally, we shall describe here an abelian analogue of
the preceding section, which gives an alternative (but different to
Turumaru [6]) abstract proof of the following well-known

THEOREM 4 (Murray-von Neumann). If A is an abelian von
Neumann algebra with a faithful normal trace and G is an ergodic
group of enuwmerable outer automorphisms preserving the trace, then
GRA is a finite factor in which A is maximally abelian.

Proof will be carried out similar to that of Theorem 1. If a
non-zero z (in GQA) commutes with A in element-wise, and if a, is
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the g-coefficient of 2, then the g-coefficients of both sides of xz==zx
(for any w<cA) satisfy the hypothesis of Lemma 2, whence a,=0
unless g=1 since G is ergodie, that is, 2=1®a,€ A4, which proves the
second half of the theorem.
Let a=a, for the convenience. If a is central in G®A, then
ga=ag=ga’ for any g¢€G,

whence a=a’ or a is a scalar by the ergodicity of G, which proves
the first half of the theorem.
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