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110. On Determination of the Class of Saturation
in the Theory of Approximation of Functions

By Gen-iehiro SUNOUCH and Chinami WATAm
(Comm. by K. KUNUG, M.J.A., Oct. 13, 1958)

1. Introduction. Let f(x) be an integrable function, with period
2z and let its Fourier series be

1 ) a0 A- , (ak cos kx-+- bk sin kx)---- A(x).

Let g(n) k=l, 2,..- be ,he summating function and consider a
family of ransforms of (1) of a summability mehod G,

2 P(z)-- a0----- A- = g(n)(a cos kxA-b sin kx)

where the parameter n needs not be discrete.
If there are a positive non-increasing function (n) and a class

K of functions in such a way that
I II f(x)-- P(x)I! =o((n)) implies f(x)=constant;

(II) llf(x)--P=(x)ll=O(F(n)) implies f(x)eK;
(III) for every f(x)K, one has IIf(x)--P(x)ll=O((n)),
then it is said that the method of summation G is saturated with
order (n) and its class of saturation is K, This definition is due
to J. Favard

The purpose of this article is to determine the order and the
class of saturation for several familiar summation methods. M.
Zamansky [5_ has solved this problem for the method of Cesro-
Fej6r, with respect to the space (C) of continuous functions; P. L.
Butzer [1] studied the cases of methods of Abel-Poisson and Gauss-
Weierstrass, employing the theory of semi-groups, but, as he made
use of the regularity of the spaces (Lv) p> 1, he left the question
open for the spaces (C) and (L).

We give here a direct method to determine the class of satura-
tion for general method of summability, with respect to the spaces
(C) and (Lv) p>l. The above condition (I) is easily verified and the
condition (III) is proved by so-called singular integral method. The
inverse problem (II) is the key point of this paper.

2. The inverse problem. Let us write zl(x)=f(x)--P(x) and
suppose that there are positive constants c, r and p such that
3 lim n(1--g(n))=ck (k-- 1, 2, ).

i) The norm means (C)- or (LV)-(p>l) norm.
2) To fix the ideas, we take the limit as n--,; but, as is easily seen, the follow-

ing arguments remain valid, with appropriate modifications, in other cases (see Theorem
2 below).
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(i) If li&(x)il=o(n-9, then we have

a(1--g(n))= n(X) coslcxdo-o(n-r), (k-l, 2, ...)

and, comparing this with (3), we see
a=0 and similarly b=0 (k=1,2,...)

and consequently we have f(x)=ao/2. Thus the condition (I) is
verified.
(ii) Suppose now ()=O(n-) and let N<n. Taking the N-th
arithmetic mean ax; of the series

( 4 (x) (1--g(n))A(x),
we have

a[x; JnJ- N (1--g(n))A(x) 1- N+I
Because it is well known, that ]]a[x; FJiii]F[] (for the spaces

(C) and (L), this is trivial; for (L) p>l, we have only to apply
Jensen’s inequality), our hypothesis on An(X) yields

in other words

from which it results that, evidently for the saee (C) and by means
of Paou’s lamina for () 1,

N lim (1--g())A() 1-- --0(1)- * N+I
that is to say

Denoting by f:(x) the trigonometric series k A(x), we see that

this is nothing but ][ a[x; f: [[ =O(1), and the latter is equivalent
respectively to
f(x) is the Fourier series of a bounded function (for the space (C))
f(x) is the Fourier series of a function in

(for the space
f:(x) is the Fourier-Stieltjes series of a function of bounded varia-
tion (for the space (L)).
See for example 7, 4, 31-4, 33.

9. The method of Cesro*Fejr summation
In this case we have

"( ) f ( }=0 n+l 2(n+ 1)u
f(x+t) sin(n+l)t/2

sin t/2
and
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n+ 1
The considerations of the preceding section yield

(i) if IIn(X) l]=o(1/n), we have f(x)=constant;
(ii) if I! z/(x)!! =O(1/n), we have

f’(x)eB i.e. f(x)eLip 1 (far the space (C))
f’(x) L i.e. f(x) Lip (1, p) (for the space (Lp), p> 1)
if(x) S i.e. f(x) BV (for the space (L))

respectively. The inverse is known to be true, see A. Zygmund [6.
Thus we have

Theorem 1. The method of Cesdro-Fejr summation is saturated;
its order of saturation is n-1, its class of saturation is the class of
functions f(x) for which

f(x)eLip 1 (for the space (C))
f’(x) L or if(x) L (for the space (L), oo > p> 1)
f(x) eBV (for the space (L)),

respectively.
In a manner similar to that in which we have proved the above

theorem, we may show the following theorems.
The Abel-Poisson mean of (R)If] is

1 f" (1--r)Pr(X)-- E A(x) r-o j f(x+t) dt (Or 1)
1 2r cos t

and g(r)=r. Thus we have
Theorem 2. The method of Abel-Poisson summability is saturat-

ed; its order of saturation is (l-r), its class of saturation is identical
with that of the method of Cesgro-Fejr summability.

The Riesz mean (R, n", 2) of (R)[f is

Rn(x)-- =o (1--(kn )")A(x) and gk(n)--(1--(--)o).
Theorem 3. The method of Riesz summability (R, n, 2) is

saturated; its order of saturation is n-, its class of saturation is the
class of functions f(x) for which

fc(x)B (for the space (C))
f(x) L (for the space (L), 1 < p< )
f:(x) S (for the space (L))

where f-(x) denotes the trigonometric series kA(x).
Corollary. If p is a positive integer, the class of saturation of

the method of Riesz summability (R, n, ) is the class of those func-
tions f(x) for which

f(0-1)(x) Lip 1 if p is even
(for the space (C))

f(-’(x) e Lip I if p is odd
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f(’(x) L (for the space (L), 1 < p< o ))
f(-1)(x) BV if p is even

(for the space (L)).
f(-)(x) BV if p is odd

The Gauss-Weierstrass integral of f(x) is

W(x; )- e- (x)- x+ t) e -t/‘ dt
0

and g()- e-/

Theorem 4. The method of approximation by the Gauss-Weier-
strass integral is saturated; its order of saturation is ; its class of
saturation is the class of functions f(x) for which

f’(x)eLip 1 (for the space (C))
f"(x) L (for the space (L), 1 < p< )
f’(x) B V (for the space (L))

respectively.
Since the Bernstein-Rogosinski mean of [f is defined by

1 {Sn(@)@S(--)}Bn(X)-- 2n+1 2n+l

=A0+ cos. k A(x)
: 2n+1

kwe have g(n)--cos and
2n+1

Theorem 5. The method of approximation by the Bernstein-
Rogosinski mean of [f is saturated; its order of saturation is n-,
and its class of saturation is the class of those functions f(x) for
which

f’(x)Lip I (for the space ())
f"(x)L (for the space (L), l p
f’(x) B V (for the space (L))

respectively.
Since the integral of de la Valle Poussin is defined by

v(x)- n, f"

() =1-+o()-
(_) (+)

we have, as the answer to a roblem roosed by P. L. Buter [1,
Theorem 6. The methog of apoimatio b the iteal of

ela of atatio i the
f’() Li 1 fo the paee ())
f’() L fo the aee (L), 1 < )
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f(x)eBV (for the space (L))
respectively.

The integral of Jackson-de la Valle Poussin is defined by

(x)- gt (- ff(x+2tn)sin’t, t , t

h A()
0

where

1-3 x2H_ 3

h(x)- (2-1x I)

0
Theorem 7. The method of approximation by the Jackson-de la

Vallde Poussin integral is saturated; its order of saturation is n-,
its class of saturation is the class of function f(x) for which

f’(x)eLip 1 (for the space (C))
f"(x) L (for the space (L), 1 < p< c
f(x) e BV (for the space (L))

respectively.
The detailed proof of these theorems will appear in another

periodical.
The problem (III) of these singular integrals are well known

(see B. Sz. Nagy [3, I. P. Natanson [4).
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