110. On Determination of the Class of Saturation in the Theory of Approximation of Functions

By Gen-ichiro SUNOUCHI and Chinami WATARI (Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

1. Introduction. Let f(x) be an integrable function, with period 2π and let its Fourier series be

(1)
$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) \equiv \sum_{k=0}^{\infty} A_k(x).$$

Let $g_k(n)$ $k=1, 2, \cdots$ be the summating function and consider a family of transforms of (1) of a summability method G,

(2)
$$P_n(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} g_k(n)(a_k \cos kx + b_k \sin kx)$$

where the parameter n needs not be discrete.

If there are a positive non-increasing function $\varphi(n)$ and a class K of functions in such a way that

(I) $||f(x) - P_n(x)|| = o(\varphi(n))^{1}$ implies f(x) = constant;

(II) $||f(x) - P_n(x)|| = O(\varphi(n))$ implies $f(x) \in K$;

(III) for every $f(x) \in K$, one has $||f(x) - P_n(x)|| = O(\varphi(n))$,

then it is said that the method of summation G is saturated with order $\varphi(n)$ and its class of saturation is K. This definition is due to J. Favard [2].

The purpose of this article is to determine the order and the class of saturation for several familiar summation methods. M. Zamansky [5] has solved this problem for the method of Cesàro-Fejér, with respect to the space (C) of continuous functions; P. L. Butzer [1] studied the cases of methods of Abel-Poisson and Gauss-Weierstrass, employing the theory of semi-groups, but, as he made use of the regularity of the spaces (L^p) p>1, he left the question open for the spaces (C) and (L).

We give here a direct method to determine the class of saturation for general method of summability, with respect to the spaces (C) and (L^p) $p \ge 1$. The above condition (I) is easily verified and the condition (III) is proved by so-called singular integral method. The inverse problem (II) is the key point of this paper.

2. The inverse problem. Let us write $\Delta_n(x) = f(x) - P_n(x)$ and suppose that there are positive constants c, r and ρ such that (3) $\lim_{n \to \infty} n^r (1 - g_k(n)) = ck^{\rho(2)}$ $(k=1, 2, \cdots).$

¹⁾ The norm means (C)- or (L^p) - $(p \ge 1)$ norm.

²⁾ To fix the ideas, we take the limit as $n \rightarrow \infty$; but, as is easily seen, the following arguments remain valid, with appropriate modifications, in other cases (see Theorem 2 below).

G. SUNOUCHI and C. WATARI

(i) If
$$|| \Delta_n(x) || = o(n^{-r})$$
, then we have
 $a_k(1-g_k(n)) = \frac{1}{\pi} \int_{-\pi}^{\pi} \Delta_n(x) \cos kx \, dx = o(n^{-r}), \ (k=1, 2, \cdots)$

and, comparing this with (3), we see

$$a_k=0$$
 and similarly $b_k=0$ $(k=1, 2, \cdots)$

and consequently we have $f(x)=a_0/2$. Thus the condition (I) is verified.

(ii) Suppose now $|| \Delta_n(x) || = O(n^{-r})$ and let N < n. Taking the N-th arithmetic mean $\sigma_N[x; \Delta_n]$ of the series

we have

$$\sigma_{N}[x; \mathcal{A}_{n}] = \sum_{k=1}^{N} (1 - g_{k}(n)) A_{k}(x) \Big(1 - \frac{k}{N+1} \Big).$$

Because it is well known that $||\sigma_N[x; F]|| \leq ||F||$ (for the spaces (C) and (L), this is trivial; for $(L^p) p > 1$, we have only to apply Jensen's inequality), our hypothesis on $\mathcal{A}_n(x)$ yields

$$\left\|\sum_{k=1}^{N} (1-g_{k}(n))A_{k}(x)\left(1-\frac{k}{N+1}\right)\right\| = O\left(\frac{1}{n^{r}}\right)$$

in other words

$$\left\|\sum_{k=1}^{N} n^{r}(1-g_{k}(n))A_{k}(x)\left(1-\frac{k}{N+1}\right)\right\|=O(1),$$

from which it results that, evidently for the space (C) and by means of Fatou's lemma for (L^p) $p \ge 1$,

$$\left\|\sum_{k=1}^{N} \lim_{n \to \infty} n^{r} (1-g_{k}(n)) A_{k}(x) \left(1-\frac{k}{N+1}\right)\right\| = O(1)$$

that is to say

$$\left\|\sum_{k=1}^{N} k^{\rho} A_{k}(x) \left(1 - \frac{k}{N+1}\right)\right\| = O(1).$$

Denoting by $f^{[\nu]}(x)$ the trigonometric series $\sum_{k=1}^{\infty} k^{\nu} A_{k}(x)$, we see that this is nothing but $||\sigma_{N}[x; f^{[\nu]}]|| = O(1)$, and the latter is equivalent respectively to

 $f^{[\rho]}(x)$ is the Fourier series of a bounded function (for the space (C)) $f^{[\rho]}(x)$ is the Fourier series of a function in (L^p)

(for the space (L^p) , p>1) $f^{[p]}(x)$ is the Fourier-Stieltjes series of a function of bounded variation (for the space (L)).

See for example [7, §§ 4, 31-4, 33].

3. The method of Cesàro-Fejér summation

In this case we have

$$P_{n}(x) = \sum_{k=0}^{n} \left(1 - \frac{k}{n+1}\right) A_{k}(x) = \frac{1}{2(n+1)\pi} \int_{-\pi}^{\pi} f(x+t) \left\{\frac{\sin(n+1)t/2}{\sin t/2}\right\}^{2} dt$$

and

[Vol. 34,

478

$$g_k(n) = \left(1 - \frac{k}{n+1}\right), \quad \lim_{n \to \infty} n(1 - g_k(n)) = k.$$

The considerations of the preceding section yield (i) if $|| \Delta_n(x) || = o(1/n)$, we have f(x) = constant; (ii) if $|| \Delta_n(x) || = O(1/n)$, we have $\widetilde{f}'(x) \in B$ i.e. $\widetilde{f}(x) \in \text{Lip } 1$ (for the space (C)) $\widetilde{f}'(x) \in L^p$ i.e. $\widetilde{f}(x) \in \text{Lip } (1, p)$ (for the space (L^p), p > 1) $\widetilde{f}'(x) \in S$ i.e. $\widetilde{f}(x) \in BV$ (for the space (L))

respectively. The inverse is known to be true, see A. Zygmund [6]. Thus we have

Theorem 1. The method of Cesàro-Fejér summation is saturated; its order of saturation is n^{-1} , its class of saturation is the class of functions f(x) for which

 $egin{array}{lll} \widetilde{f}(x)\in ext{Lip 1} & (for the space (C))\ \widetilde{f}'(x)\in L^p & or f'(x)\in L^p & (for the space (L^p), \ \infty>p>1)\ \widetilde{f}(x)\in BV & (for the space (L)), \ ext{sectionded} \end{array}$

respectively.

In a manner similar to that in which we have proved the above theorem, we may show the following theorems.

The Abel-Poisson mean of $\mathfrak{S}[f]$ is

$$P_{r}(x) = \sum_{k=0}^{\infty} A_{k}(x) r^{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) \frac{(1-r^{2})}{1-2r\cos t + r^{2}} dt \quad (0 \le r < 1)$$

and $g_k(r) = r^k$. Thus we have

Theorem 2. The method of Abel-Poisson summability is saturated; its order of saturation is (1-r), its class of saturation is identical with that of the method of Cesàro-Fejér summability.

The Riesz mean (R, n°, λ) of $\mathfrak{S}[f]$ is

$$R_n(x) = \sum_{k=0}^n \left(1 - \left(\frac{k}{n}\right)^{\rho}\right)^{\lambda} A_k(x) \quad \text{and} \quad g_k(n) = \left(1 - \left(\frac{k}{n}\right)^{\rho}\right)^{\lambda}.$$

Theorem 3. The method of Riesz summability (R, n°, λ) is saturated; its order of saturation is $n^{-\rho}$, its class of saturation is the class of functions f(x) for which

$$egin{array}{lll} f^{[e]}(x)\!\in\!B & (for \ the \ space \ (C)) \ f^{[e]}(x)\!\in\!L^p & (for \ the \ space \ (L^p), \ 1\!<\!p\!<\!\infty) \ f^{[e]}(x)\!\in\!S & (for \ the \ space \ (L)) \end{array}$$

where $f^{[r]}(x)$ denotes the trigonometric series $\sum_{k=1} k^{\rho} A_k(x)$.

Corollary. If ρ is a positive integer, the class of saturation of the method of Riesz summability (R, n°, λ) is the class of those functions f(x) for which

$$\begin{array}{lll} f^{(\rho-1)}(x) \in \operatorname{Lip} 1 & if \ \rho \ is \ even \\ \widetilde{f}^{(\rho-1)}(x) \in \operatorname{Lip} 1 & if \ \rho \ is \ odd \end{array} (for \ the \ space \ (C))$$

$$\begin{array}{lll} f^{\scriptscriptstyle(\rho)}(x) \in L^p & (for \ the \ space \ (L^p), \ 1$$

The Gauss-Weierstrass integral of f(x) is

$$W(x; \xi) = \sum_{n=0}^{\infty} e^{-k^2 \xi/4} A_k(x) = \sqrt{\frac{\pi}{\xi}} \int_{-\pi}^{\pi} f(x+t) e^{-t^2/\xi} dt$$

and $g_k(\xi) = e^{-k^2 \xi/4}$

Theorem 4. The method of approximation by the Gauss-Weierstrass integral is saturated; its order of saturation is ξ ; its class of saturation is the class of functions f(x) for which

respectively.

Since the Bernstein-Rogosinski mean of $\mathfrak{S}[f]$ is defined by

$$B_{n}(x) = \frac{1}{2} \left\{ S_{n} \left(x + \frac{\pi}{2n+1} \right) + S_{n} \left(x - \frac{\pi}{2n+1} \right) \right\}$$
$$= A_{0} + \sum_{k=1}^{n} \cos \frac{k\pi}{2n+1} A_{k}(x)$$

we have $g_k(n) = \cos \frac{k\pi}{2n+1}$ and

Theorem 5. The method of approximation by the Bernstein-Rogosinski mean of $\mathfrak{S}[f]$ is saturated; its order of saturation is n^{-2} , and its class of saturation is the class of those functions f(x) for which

respectively.

Since the integral of de la Vallée Poussin is defined by

$$\begin{split} V_n(x) &= \frac{h_n}{2\pi} \int_{-\pi}^{\pi} f(x+t) \cos^{2n} \frac{t}{2} dt \\ &= \sum_{k=0}^n \frac{(n!)^2}{(n-k)! (n+k)!} A_n(x) \qquad \left(h_n = \frac{2n(2n-2)\cdots 4\cdot 2}{(2n-1)(2n-3)\cdots 3\cdot 1}\right), \\ g_k(n) &= \frac{(n!)^2}{(n-k)! (n+k)!} = 1 - \frac{k^2}{n} + O\left(\frac{1}{n^2}\right), \end{split}$$

we have, as the answer to a problem proposed by P. L. Butzer [1],

Theorem 6. The method of approximation by the integral of de la Vallée Poussin is saturated; its order of saturation is n^{-1} , its class of saturation is the class of functions f(x) for which

$$f'(x) \in \operatorname{Lip} 1$$
 (for the space (C))
 $f''(x) \in L^p$ (for the space (L^p), $1)$

[Vol. 34,

480

$$f(x) \in BV$$
 (for the space (L))

respectively.

The integral of Jackson-de la Vallée Poussin is defined by

$$\begin{split} I_n(x) &= \frac{\tau_4}{2\pi} \int_{-\infty}^{\infty} f\left(x + \frac{2t}{n}\right) \frac{\sin^4 t}{t^4} dt \quad \left(\tau_4 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sin^4 t}{t^4} dt\right) \\ &= \sum_{k=0}^{2n-1} h\left(\frac{k}{n}\right) A_k(x) \end{split}$$

where

$$h(x) = egin{cases} 1 - rac{3}{2} \, x^2 + rac{3}{4} \, | \, x \, |^3 & | \, x \, | \, \leq 1 \ rac{1}{4} (2 - | \, x \, |)^3 & 1 \, \leq | \, x \, | \, \leq 2 \ 0 & | \, x \, | \, \geq 2. \end{cases}$$

Theorem 7. The method of approximation by the Jackson-de la Vallée Poussin integral is saturated; its order of saturation is n^{-2} , its class of saturation is the class of function f(x) for which

$f'(x) \in \operatorname{Lip} 1$	(for	the	space	(C))	
$f^{\prime\prime}(x) \in L^p$	(for	the	space	(L^p) ,	$1\!<\!p\!<\!\infty$)
$f(x) \in BV$	(for	the	space	(L))	

respectively.

The detailed proof of these theorems will appear in another periodical.

The problem (III) of these singular integrals are well known (see B. Sz. Nagy [3], I. P. Natanson [4]).

References

- [1] P. L. Butzer: Math. Ann., 133, 410-425 (1957).
- [2] J. Favard: Colloques d'Analyse Harmonique Nancy, Paris, 15, 97-110 (1949).
- [3] B. Sz. Nagy: Hungarica Acta Math., 1, 1-39 (1948).
- [4] I. P. Natanson: Konstruktive Funkionentheorie, Berlin (1955).
- [5] M. Zamansky: Ann. Sci. Ecole Normale Sup., 66, 19-93 (1949).
- [6] A. Zygmund: Bull. Amer. Math. Soc., 51, 274-278 (1945).
- [7] A. Zygmund: Trigonometrical Series, Warszawa (1935).