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1. Introduction. Recently Dr. T. Shirota kindly called the
author’s attention to the following fact;in the author’s paper 1
published in Duke Mathematical Journal, 24, the continuity of p(t, x;
s, y)and accordingly that of the fundamental solution u(t, x; s, y)
in yeB is not obvious in the case where a(t,) takes the value zero
for some (t,} and is not identically zero. The same situation occurs
in the author’s another paper [2. In the present note, instead of
completing the proof of the continuity of the fundamental solution,
we shall slightly modify the argument in 1].

The argument in the present note may be adapted to [2. By
the way, we state the following correction to the paper [2;
F_l--pz(s, y;t,x) in the numerator of the right-hand side of (3.24)
in [2, p. 63 should be replaced by pz(s, y; t, x).

2. Construction of the fundamental solution. We shall use
notations stated in [1 without repeating definitions of them. We
first notice that, if a(t, ) identically equals zero or is bounded away
from zero, p(t, x; s, y) has desired regularity and accordingly u(t, x; s, y)
does.

For each n_> 1, let Z(2) be a monotone increasing function of class
C in 2el0, 1 such that

( 1
;(2)-- 1/(n-F 1) for

_
1/(n-k 2)

for 2

_
1/n.

We define (, ) and/(t, ) on Is0, t0] B for n-0, 1, 2,... as follows:

2  0(t,
and (t, )- l--a(t, ) (n-O, 1, 2,...)

where a(t,)is the function stated in the given boundary condition
(B) in [1. Then, for each n_0, we may apply the argument in 1
to the parabolic equation Lf+h-O associated with boundary condition:
S
and obtain the fundamental solution u(t, ; s, y) with all properties

S’stated in EI where (B) is replaced by (
Let f() be an arbitrary continuous and non-negative function on

D and put
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3 fn(t, X)--fUn(t, X; S, y)f(y)dy
D

and
f(t, )(t, )-(t, )f(t, )+ Z(t, ) -,

Then fl--(afl--afl)f--(a--a’)f, and hence

(5)

and

(6)

(n_>0)

(,>_n>_0).

[(t, )-(t, $)] [-(t, )]- %(t, $)
n(t, )-- if a(t, )

_
1In

0 if a(t, ) > 1/n

-(t, e)[-(t, )]-%(t, )
(?0(t, )-- if a(t, ) 1

3f(t, $)/3n. if a(t, $) 1

for ,>_ n>_ 1. Furthermore, since f(t, x)--f(t, x) satisfies the equation

L[f--fn-O on (s, to)D, initial condition: lira [f--f--O boundedly

on D, and boundary condition (B.) with --(n, we have (see part iii
of Theorem in [1)

(7) ,
--Un(t X; , $)/n.}q,(r, )d’..

Since u(t, x; s, y) is non-negative ((1.5) in [1]) and satisfies the boundary
condition of the form (4.12) in [1] as a function of (s, y}, the value
of the function in in the right-hand side of (7)is always non-
negative, while (r,$)>_0>_0(r,) for ,>_n>_l by virtue of (5) and
(6). Hence we have

f(t, x) <_f(t, x) <_fo(t, x) for , >_ n >_ 1,
and hence

Un(t X; 8, y)u(t, x; s, y)_ Uo(t, x; s, y) for ,
_
n

_
1

since f(x) is arbitrary in (3). Therefore
8 ) u(t, x; s, y)--lim u,(t, x; s, y)

exists and does not exceed Uo(t, x; s, y).
It follows from (3), (5) and (7) that

(9)
u(t, x; s, y)--Un(t, x; s, y)-- dv {Un(t, x; v, $)[I -(V, . )

--3u(t, x; r, )/n,}O,(r, ; s,
where

n(t, ; 8, y)
(10) {On(t )--O(t, )] [1--0(t, )]-’u(t, ; 8, y)

for ,>_ n>_ 1. Letting ,--> oo, we obtain

if a(t, $) <_ l/n
if a(t, $) > 1/n
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(11)

where

u(t, x; s, y)--u(t, x; s, y)

dr {u(t, x; , )[1+(r, $)]
B

(t, ; s, y)
(12) =[[an(t,$)--a(t,$)]El--a(t,$)]-u(t,$; s, y) if a(t,#)<_l/n,

[0 if a(t, $) > 1/n
for n_ 1. Since Un(t,x; 8, y)has all properties stated in Theorem in
[1, 1] where (B) is replaced by (B,), it follows from (11)and (12)
that u(t,x;s, y) satisfies (1.1-7)and (3.13) in Ill--we shall prove
only (1.2); all other properties may be proved more easily.

Part ii) of Theorem in [1] and (11) imply that u(t,x; s, y)--
u,(t,x;s,y) satisfies the boundary condition (B.,) with ,(t,)--
@,,(t, $; s, y) for any fixed <s, y}. Hence, at any point <t, } where
a(t,$)>O, u(t,x; s, y) satisfies (1.2) in [1] as well as u,(t,x; s, y) since
a,(t, $)=a(t, ), fl(t, $)--fl(t, ) and ,(t, )-0 for sufficiently large n.
At any point <t, $} where a(t, $)-0, we have a(t, )-(n+ 1)- (from
(1) and (2)) and accordingly

(n+ 1)-u(t, ; s, y)+{1--(n+ 1) -} 3u(t,$; s, y)
3nt,

:n(t, ; 8, y)l(n+ 1)-u(t, ; s, y).
Hence we get u(t,; s, y)/an.-O. Thus we obtain (1.2) in [1].

Similarly we may construct a function u*(t, x; s, y) satisfying (1.
1", 2", 4*) and (3.13") in [1] and, repeating the argument in [1, 4],
we may show that u(t, x; s, y) has all required properties.
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