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1. This is a continuation of the previous paper [4, III. The
purpose of this paper is to show the reciprocal formula of the Hilbert
operator. The method of proof is a so-called complex variable method
which is different from that of the previous one quitely. As an ap-
plication, we can establish some results for analytic functions in a
half-plane.

Let g(x) be a real valued measurable function over (--oo, oo) we
put

(11) C(z,g)-- 1 g(t) dt
2zri t-- z

(1.2) P(z, g)_ l____ g(t) y dt
r (t--x)+y

(1.8) (, g)_ _1__ (t) (t-x)dt
zr (t--x)+y

We shall call C(z, g) and P(z, g) integrals of Cauchy type and Poisson
type respectively, associated with the function g(x). We observe also

2C(z, g)-P(z, g)+iP(z, g).
We have then
Theorem 1. Let g(x) belong to L (p=>l, 0a<l); then we have

(1.5) (S)-lim P(z, g)-g(x), a.e.
y-O

dx--O,(1.6) lim IP(z’g)

where the sign (S) means that the limit exists along a Stoltz’ path
as an angular limit.

Theorem 2. Let g(x) belong to L$ (p:> 1, 0a<1) or g(x) and
(x) both belong to L, (0a<l). Then we have also

(1.7) (S)-lim P(z, g)-(x), a.e.
y--O

(1.8) lim
.0 l+[x[,

dx-O.

For this purpose it is enough to prove
Theorem 3. Under the assumption of Theorem 2 we have

*) Here we state the result without proof. The dtiied- argument will appear
in Jour. Fac. Sci. Hokkaid6 University.
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(1.9) P(z, )--P(z, g).
From Theorems 2 and 3 we have
Theorem. 4. Under the assumption of Theorem 2 we have

(1.10) 1 g(t) dt I i(t) dt
2i t--z 2i t--z

As an immediate result we have a desired reciprocal formula.
Theorem 5. Under the assumption of Theorem 2 we have

(1.11) ()(x)=--g(x), a.e.
2. Let f(z), z=x+iy, be analytic in a half-plane y>0. If the

limit
(2.1) lim f(x+iy)= f(x)

exists for almost all x, f(x) will be called the limit function of f(z).
If g(x)=f(x)is the limit function of a function analytic for y>0,
such that
(2.2) f(z)-- C(z, g), or f(z)-- P(z, g),
then we shall say that f(z) is represented by its proper Cauchy or its
proper Poisson integral, omitting the adjective "proper" if no con-
fusion arises. By $ we denote the class of functions f(z) analytic
in a half-plane y>0 such that the integral

(2.3) ilf(x+iy)l[ --(f ]f(x+iy) I.dx)<const.
for 0<y< .
If we put a=0 in (2.2), we obtain the ordinary class . For this
class, there is a study of Paley-Wiener _6 and Hill-Tamarkin [3_.
Extension of their result to our class $ is the purpose of the second
half part of this paper. We have

Theorem 6. Under the assumption of Theorem 2, if we put
(2.4) f(z) 2C (z, g),
then f(z) is analytic in a half-plane yO; its limit function exists
as an angular limit and equals to
(2.5) f(x) g(x)+ iY(x).
Furthermore f(z) is representable by its Cauchy integral.

Theorem 7. Let f(z) be analytic in a half-plane y>O and have
a limit function f(x) which belong to L’, (pl, 0a<l). Then if
f(z) is represented by its Cauchy integral, we have

(2.6) (9f)--f and (f)-- --fTheorem 8. Let f(z) be analytic in a half-plane yO and have
a limit function of L, (p>l, 0al). Furthermore let this limit
function exist as an angular limit on a point of the set with a
positive measure. Then f(z) is represented by its Cauchy integral.

To prove this theorem we need Theorem 5 and the unicity theorem
of Lusin-Privaloff [5 and F. and M. Riesz’ theorem [7.
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Theorem A. Let f(z) be analytic in the interior of a unit circle.
Let f(z) have an angular limit equal to a constant c for a point of
the set with a positive measure which is situated on a circumference
of this circle. Then f(z) is identically equal to this constant c.
As for equivalency of the integral representation of the Cauchy type
and that of the Poisson type, there is a study of G. Fichtenholtz [1
in a unit circle and that of Hill-Tamarkin [3 in a half-plane for the
class (C). Now we prove the following:

Theorem 9. Let f(z) be analytic in a half-plane yO and have
a limit function which belongs to L’, (pl, 0a< 1). Then whenever
f(z) is represented by its Cauchy integral, it is also represented by
its Poisson integral and vice versa.

REMARK 1. By Theorem 9, f(z) of Theorems 6, 8 and 9 belongs
to the class $J,’.

REMARK 2. In Theorem 8, the case p-1 is an open question. If

we assume that f(x) also belongs to L,, our conclusion is also true,
but this additional condition is somewhat strong.

:. In this section we state the result concerning the class (C)$.
This is a converse of the preceding one. The key point is to find a
limit function in each functional space. We need two theorems of
Paley-Wiener [6 as a base of our arguments.

Theorem B. Let f(z) belong to (C) (p=2) in an upper half-plane.
Then for any given yo > O we have

1 f dt(3.1) f(z+ iyo)
2zi

f(t+ iyo)
t-- z

and

(3.2) f(z+ iYo) f(t+iyo) y dt
(t--x)+Y

for all y>O, z=x+iy.
Theorem C. The two following classes of analytic functions are

identical:
1 the class of all functions f(x+iy) analytic for y 0 such

that

(3.3) f(x+iy)i dx< const. [0 < y< ;

(2) the class of all functions defined by

fo(3.4) f(x+ iy)-- 1. i. m. f(t) e( dt

where f(t) belongs to L over (--, ).
We begin to establish the following three theorems:
Theorem 10. Let f(z) belong to (C) (pl, 0a<:l). Then the

conclusion of Theorem B is also true.
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Theorem 11. Let f(z) belong to (pl, 0a<l). Then for
any positive number
(3.5) lim f(z)=o(1), unif in

Theorem 12. Let f(z) belong to , (pl, 0a<l). Then this
f(z) can be written as
(3.6) f(z)-- Bs(z) H(z),
where H(z) belongs to the same class ,, does not vanish in a half-
plane y O, and

(3.7) Bs(z) II z--z--z-
where [z is a sequence of zeros of f(z) in yO. The B(z) is catled a
Blaschke product associated with f(z) and has a following properties:
(3.8) B(z) 1 for art y 0,
(3.9) (S)-lim Bs(z)- 1, a.e.x.

.0

This is a special case of the theorem of R. M. Gabriel [2, and
if we put a-0, we obtain the result of Hill-Tamarkin.

Then if we put with a given f(z) of
(3.10) r(z)- f(z)/(z
F(z) belongs to the same class 59p because (z+i) is an analytic func-
tion in an upper half-plane and has no zero point there. Thus the
existence of the limit function is proved.

Hence we have
Theorem 13. Let f(z) belong to , (p:>l, 0a<l). Then f(z)

is represented by its Cauchy and Poisson integral. As for real part
of f(x) we have also

(3.11) f(z)-2C(z, 9f)--P(z, f)+iP(z, 9f).
Theorem 14. Let f(z) belong to (pl, 0a<l). Then we have

(3.12) lim f(x+iy) f(x) dx-O.
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