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6. Convergence Concepts in Semi-ordered Linear Spaces. I

By Hidegord NAKANO and Masahumi SASAKI
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1959)

Concerning semi-ordered linear spaces, L. Kantorovitech [1] gave
originally two different concepts of convergence, that is, order con-
vergence and star convergence. One of the authors introduced two
other concepts, that is, dilatator convergence in [2] and individual
convergence in [8], which are essentially equivalent to each other.
Combining these concepts, we also obtain star-individual convergence
in [4]. In this paper we want to discuss these concepts of convergence
and their combinations more systematically. In the sequel we will use
the terminologies and notations in the book [4].

Let R be a continuous semi-ordered linear space. We consider

the order convergence basic, that is, for a sequence a,eR (»=0,1,2,
+++), ap=lim @, means

v >0

w=N Uag=U Na.

ve=1 pzv v=1 p=v
In the sequel we denote by {a,}, an arbitrary sequence a,cR (v=0, 1,
2,---) and {a.},5; means a, (v=1,2,---). A mapping @ of all sequences
{a,}, to sequences {a!}, is called an operator, if
1) ay=lim a, implies a$=Ilim a?,

V>0

2) {a},», depends only upon {a,},s:
that is, a,=b, (v=1,2,---) implies at=b? (v=1,2,---). An operator
a is said to be linear if
(aq,+Bb.)*=aat+pb¢  (v=0,1,2,---).

For two operators a, b, putting

agb = (ag)b (”:'0’ 1’ 27' * ')’
we also obtain an operator ab, which will be called the product of a
and b. With this definition, we have obviously

(ab)e = a(be).

a is said to commute b, if ab=ba,

A set U of operators is called a process, if for any two sequences
{a.}.,, {b,}, with a,=b, we can find ae¥ for which al=-b}. A set 4
of processes is called a modificator, if for any U, A,c A we can find
Aec A for which AC A, A,. For two modificators 4, B we write A>=B,
if for any UcA we can find BeB for which YDO%B. If A>=B and
B>=A at the same time, we write A=B.

Let A and B be modificators. For a process AcA and a system
of processes B,cB (aeA) we see easily that the set

fab: ae, 6eB,}
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also is a process, and furthermore that all such processes constitute
a modificator, which will be called the product of A and B, and
denoted by AB. We also see that the system
{ab: ae?, HeB} AeA, BeB)
is a modificator, which will be called the direct product of A and B
and denoted by A°B.
For modificators 4, B, C we have obviously by definition

(1) (AB)C=A(BC), (A°B)oC=Ao(B-C),

(2) A°B> AB,

(38) A>B implies AC=BC, CA=CB, A-C>=B°C, CoA=CoB,
(4) (AB)°C=A(B°C), A°(BC)=(A°B)C.

For a modificator 4, a sequence {a,},,, is said to be A-convergent,
if we can find a,cR and e A such that

at=1lima® for all ae¥,

v 00

In this case we see easily that such a, is determined uniquely. Thus
such a, is called the A-limit of {a.},», and we write
a, = A-lim a,.

With this definition we have obviously
Theorem 1. For two modifications A, B we have
a, = AB-lima,

v =00

if and only if we can find e A such that
at=B-lima¢ for all ae¥.

For two modificators A, B, we write A> B if
a,=A-lima, implies a,=B-lima,;

V=00 P o]

and A is said to be equivalent to B and denoted by A~B, if A>B
and B> A at the same time. With this definition we see easily

(5) A>B implies A>B,
(6) A>B implies CA>CB, CoA>CoB,
(7) A>A°B>AB.

A modificator A4 is said to commute an operator a, if
a,=A-lim a, implies a$=A-lim al.

V>0 v 00

With this definition we conclude immediately by Theorem 1

Theorem 2. For two modificators A, B, if every operator of A
commutes an operator ¢ and B commutes ¢, then AB commutes c.

As the simplest operator we have the identity 1, that is, ai=a,
(»=0,1,2,---). The modificator, which consists of only one process
{1}, is denoted by O. O-convergence coincides obviously with the order
convergence, that is, a,=0-lima, if and only if a,=lima,. Further-

PR v->cc

more we have for every modificator A
O0>A, OA=A0=0°4=A4°0=A.
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For every subsequence {¢.}.,»; of {1,2,-::}, putting
ai=a, ai=a, (¥=1,2,---),

we obtain an operator 8, which will be called a sub. operator and
denoted by 3{sx.}, if we need to indicate {¢.}. For two sub. operators
8,, 8, the product 3,3, also is a sub. operator. We write 8{y,}=>3{p.}
if {o,} is a subsequence of {u.}.

We denote by S the modificator, which consists of all such proc-
esses © of sub. operators that
1) 8<3,cS implies 3¢S,
2) for any sub. operator 8 we can find 3,¢S for which 3=3,.
With this definition we have obviously
(8) SS = 8-S=S8.
For every projector [p], putting a!=[pJla, (»=0,1,2,.:-), we obtain
an operator I, which will be called a loc. operator and denoted by I[p],
if we need to indicate [p]. We write [[p]=I[q], if [p]=[q]. We
have obviously I[[p]![q]=I[»][¢q] and 8=35[ for every loc. operator [
and sub. operator 3.

We denote by L the modificator which consists of all such proc-
esses € of loc. operators that
1) I<[,e® implies [e&,
2) for any loc. operator ! we can find €€ for which =,
With this definition we have obviously

(9) LL = LoL, = L.
Since 8!=I8 for every loc. operator ! and sub. operator 3, we have
(10) LoS = SoL.

Lemma 1. Let A be a modificator, which commutes every loc.
operator. In order that

ao = LA'].im 0/,,,

v -»o0
it 1is mecessary and sufficient that we can find a system of projectors
[p.] (2e4) such that

U0 ]=Ule]
[(pJa,=A-lim [p,Ja, for all 2¢4.

Proof. We need only to prove the sufficiency. For such a system
of projectors [p,] (1€4), denoting by € the set of all such [[p] that
[p1=[p;] for some AcA or [p][p,]=0 for all 2¢4, we see easily that
LeL, and

a} = A-lima! for all leg,

V>0

because A commutes ! by assumption.
For two elements p=0>q in R, putting
al=(a,~p)~qg (»=0,1,2,---),
we obtain an operator i, which will be called an ind. operator and
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denoted by i(p, q) if we need to indicate p,q. We write i(p, g)=i(r, s)
if p=r=s=>q. We have obviously
i(p, Q)i(r, 8)=i(p~1, ¢~'3)
and il=Ii, i8=3i for every loc. operator [ and sub. operator 3.
We denote by I the modificator which consists of only one process
of all ind. operators. With this definition we have obviously

11) II=TJ-I=1
From the proof of Theorem 1.1 in [3], we conclude easily
(12) I~ L.

Lemma 2. In order that a,=I-lima,, it is necessary and suf-

v >0

ficient that we can find a sequence 0=p,<p,<--- such that
(aor\m)"(—m)ﬂg (@, ~p)~(—p,) Sfor all p=1,2,--,
lim (@~p,)~(=p)=2 for all xe[a,;, as---]R.
oo
Proof. We need only to prove the sufficiency. Putting i,=i(p,,
—p,) (¢=1,2,.--), we obtain by assumption for any ind. operator i
(lim a})*=1im ai*=(im a}*)!=ali=(al)
v -»00 Y 00 v 00

Thus, making p—>oo, we obtain lim ai=al. We conclude similarly also

V>0

that lim al=al. Therefore a,=I-lim a, by definition.

PET) PR

As iI=Ii and I consists of only one process, we have by definition
(18) IoL, = Lol = LI.
Recalling (12), we obtain by (9), (11)
(14) LI~IL~1I
As i8=38i, we have
(15) IoS = SoI = SI.
As I°-S=1IS by (2), we have hence SI > IS by (5). Now we shall prove
(16) SI~ IS.

I3
We suppose a,=IS-lima,. Putting p,=¢>]|a,
v=1

v -»00

see easily that the sequence 0=<p,<p,<.-. satisfies the condition
of Lemma 2. For any sub. operator 3, we can find by assumption a
sequence of operators §>8,>8,>--- such that

(@~p,)~ (=p,)=lim (@~p)~-(—p,) (#=1,2,--).

Then we can find by the diagonal method a sub. operator 3,<3 such
that

(ﬂ:l, 27' . °)r we

(a’of\pﬂ)v(—py)=1i_g:- (ago/\pﬂ)v(_p#) (/l:]., 2" . )'
Thus we have a,=SI-lim a,, and therefore IS >>SI by definition.

V>0

A modificator is said to be regular, if it commutes every sub.,
loe. and ind. operators. The modificator O is obviously regular.
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Lemma 3. If a modificator A is regular, then all SA, LA and
IA are regular, and ScA<A, LocA< A, [-A<LA.

Proof. By virtue of Theorem 2, both LA and IA are regular.
To prove that SA is regular, we need only to show that SA commutes
every sub. operator. We suppose that a,=SA-lima,. Then we can

find by Theorem 1 a process SeS such that
ai = A-lima? for all 8¢S,

V>0

For any sub. operator 8, we obtain hence
a® = A-lima®® for §,3¢S.

v >00

Putting &,={3: 8,5¢S}, we see easily that S,¢S. Thus we have
af = SA-lim a%. Therefore SA commutes every sub. operator. If

A is regul;r, then we have obviously ScA<A4, L-A<A, IrPA<A by
definition.
Lemma 4. If R is super-universally continuous and a modifi-
cator A commutes every loc. operator, then we have
(LeS)A ~ LSA > SLA.

Proof. We suppose that a,= LSA-lima,. As R is super-

PR

universally continuous by assumption, we can find [p.] (#=1,2,--:)
such that

[pp]aO'—:SA'{i_)rg [p#]av (ﬂ:l, 2, ')’ ,,L,Jl [pll] —ZVL;{ [a,].
Then we can find S,¢8 by definition such that
[p.Ja§=A-lim [p,]a? for all 3¢S, (#=1,2,---).

Denoting by © the intersection of all &, (¢=1,2,---), we see easily
by the diagonal method that ©¢S. Denoting by £ the set of all {[p]
such that [p]=<[p,] for some x=1,2,--- or [p][p.]=0 for all p=1,
2,--+, we see easgily that ¥e L, because A commutes every loc. operator
by assumption. Thus we have

af = A-lima® for all [e&, 3¢,

v =00

and hence q,=(L°S)A-lima, Therefore we have LSA>(LoS)A.

On the other hand we have (L°S)4 > LSA by (2), (8). Consequently
(LeS)A~LSA. As LoS=8-L>SL, we obtain hence LSA > SLA.

A modificator is said to be standard, if it is composed only of
O, S, L, I by the product and the direct product.

Theorem 3. If R is super-universally continuous, then every
standard modificator 1s equivalent to one of O, S, L, LS, SL.

Proof. We need only to show SLS~LSL~ILS~ISL~SL. As
LS> SL by Lemma 4, we obtain by (6), (8), (7): SLS>SSL=SL> SLS,
and by (9), Lemma 8: LSL>SLL=SL>LSL. As L~I by (12), we
have by (6), (16), (11): ISL~ISI~IIS=IS~SI~SL. As IL<LI by
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(18), (2), we have by (8), (16), (12): ILS<LIS~LSI~LSL~SL. On
the other hand we have ILS> ISL by Lemma 4 and (6), and ISL~SL,
as proved just above.
Theorem 4. If R is super-universally continuous and complete,*’
then every standard modificator is equivalent to one of O and S.
Proof. If R is super-universally continuous and complete, then
we see easily I~L~Q0O. Thus we obtain by Lemmas 3 and 4
S>LS>SL~S0=S.
Therefore we conclude our assertion from Theorem 8.
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*) A gemi-ordered linear space is said to be complete if every orthogonal sequence
of elements is bounded (cf. [5]).



