28. On Minimal Slit Domains

By Akira Sakai
(Comm. by K. Kunugi, M.J.A., March 12, 1959)

An arbitrary plane domain of finite connectivity is mapped conformally onto the whole plane with the slits parallel to the real axis, and the mapping is uniquely determined except some suitable linear transformations. But when the domain is of infinite connectivity, the uniqueness does not hold. Koebe introduced the concept minimalen Schlitzbereich as the normal domain, the mapping onto which is unique (cf. [1, 2]). This mapping function is obtained as the solution of an extremal problem (cf. [3]). In this paper, we deal with the existence of the extremal mapping function onto the circular ring with radial or circular slits as normal domain and some properties of this normal domain, minimal ring.

1. Conformal mapping onto a circular ring with the radial slits

Let Ω be a plane domain bounded by $N+2$ analytic Jordan curves $\gamma_{1}, \gamma_{2}, \delta_{1}, \cdots, \delta_{N}$. We define the class \mathfrak{J} of function h on Ω, satisfying the following conditions:

1) h is harmonic in Ω,
2) there is a negative constant $k(h)$ depending on h, and $h=k(h)$ on γ_{2}, and $h=0$ on γ_{1},
3) for the conjugate harmonic function h^{*} of h,

$$
\int_{r_{1}} d h^{*}=2 \pi, \quad \int_{r_{2}} d h^{*}=-2 \pi, \quad \int_{\delta_{j}} d h^{*}=0 \quad(j=1, \cdots, N) .
$$

Let h_{0} be the function of \mathfrak{g} such that

$$
\frac{\partial h_{0}}{\partial n}=0 \quad \text { on } \delta_{j} \quad(j=1, \cdots, N)
$$

Then, the function $f(z)=e^{h_{0}+i h_{0}^{*}}$ maps Ω onto a circular ring $r_{0}<|w|<1$ ($r_{0}=k\left(h_{0}\right)$) with N radial slits in the w-plane.

Lemma 1. The function h_{0} minimizes the functional

$$
2 \pi k(h)+\int_{j} h d h^{*} \quad\left(\delta=\bigcup_{j} \delta_{j}\right)
$$

in \mathfrak{F} and the minimizing function is unique.

$$
\text { Proof. } \begin{aligned}
D\left(h-h_{0}\right) & =\int_{\partial \Omega}\left(h-h_{0}\right) d\left(h-h_{0}\right)^{*} \\
& =\int_{\delta} h d h^{*}+\int_{\delta}\left(h d h_{0}^{*}-h_{0} d h^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\delta} h d h^{*}+\int_{-r_{1}-r_{2}}\left(h d h_{0}^{*}-h_{0} d h^{*}\right) \\
& =\int_{0} h d h^{*}+2 \pi\left(k(h)-k\left(h_{0}\right)\right)
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
2 \pi k(h)+\int_{\delta} h d h^{*}=2 \pi k\left(h_{0}\right)+D\left(h-h_{0}\right) . \tag{1}
\end{equation*}
$$

Since $D\left(h-h_{0}\right) \geqq 0$, the left member in (1) attains its minimum when $h=h_{0}$. From the condition 2) follows the uniqueness of such function.
(Q. E. D.)

In the next place, we shall denote by the same notation Ω the general domain bounded by two analytic Jordan curves γ_{1}, γ_{2} and a closed set δ encircled by γ_{1} and γ_{2} such that $\delta \frown \gamma_{1}=0$ and $\delta \frown \gamma_{2}=0$. Consider the monotonic exhaustion Ω_{n} of Ω, the boundary of which consists of a finite number of analytic Jordan curves $\gamma_{1}, \gamma_{2}, \delta_{1}, \cdots, \delta_{N(n)}$. We define the class \mathscr{F}_{n} (resp. \mathfrak{F}) of functions on Ω_{n} (resp. Ω) as follows: $f \in \mathscr{F}_{n}$ (resp. \mathfrak{F}) is regular and univalent in Ω_{n} (resp. Ω), $|f(z)|=1$ on $\gamma_{1},|f(z)|=r(f)<1$ on γ_{2}, and $f\left(z_{0}\right)=1$ for a fixed point z_{0} on γ_{1}. The logarithmic area $A(f)$ of the "image" of δ by $f \in \mathscr{\not}$ is defined as the limit as $\Omega_{n} \rightarrow \Omega$ of the logarithmic area of the domain enclosed by the image δ_{j}^{\prime} of δ_{j}.

Theorem 1. There exists a unique function $f_{0} \in \mathscr{F}$ such that

$$
\operatorname{Min}\{2 \pi \log r(f)-A(f)\}=2 \pi \log r\left(f_{0}\right) .
$$

The function f_{0} maps the domain Ω conformally onto a concentric circular ring with the radial slits whose area measure is zero.

Proof. $h=\log f$ belongs to $\mathscr{5}$ for $f \in \mathscr{F}$. Applying Lemma 1 to the functional $L_{n}\left(f, \Omega_{n}\right)=2 \pi \log r(f)-A_{n}(f)$ of \mathfrak{F}_{n}, we have the function f_{n} minimizing this functional in \mathfrak{F}_{n}. For $n \leqq m, L_{n}\left(f, \Omega_{n}\right)$ $\leqq L_{m}\left(f, \Omega_{m}\right)$. Since $\left\{f_{n}\right\}$ is the normal family, the limiting function f_{0} belongs to \mathfrak{F}. By the reduction theorem (cf. [3]) the existence of the extremal function f_{0} is shown. The deviation of an arbitrary function f of \mathfrak{F} from this extremum is $D\left(\log |f| f_{0} \mid\right)$. From the normalization condition on z_{0}, we obtain the uniqueness of such extremal function. The equality shows that $A\left(f_{0}\right)=0$.

Suppose that there is a connected component d_{1} of "image" of δ which is not radial. Let $w^{\prime}=\varphi(w)$ map conformally a triply connected domain bounded by $\Gamma_{1}:|w|=1, \Gamma_{2}:|w|=r_{0}$ and d_{1} onto a circular ring with radial slit as image of d_{1}. By Lemma 1 we have $r^{\prime}<r_{0}$. Since $F(z)=\varphi\left(f_{0}(z)\right)$ is a function of \mho, this contradicts the extremal property of f_{0}.
2. Minimal circular ring

Let G be the image of Ω by the extremal function f_{0} and $\mathscr{\Omega}$ the
class of piecewise smooth functions $g=g(w)$ in G which vanish on Γ_{1}, Γ_{2}, and $D(g)<\infty$. Each G has the following property:
(*) $\quad D(\log |w|, g)=0 \quad$ for arbitrary $g \in \mathscr{R}$.
This condition can be replaced by
(**) $\quad D(\log |w|+g) \geqq D(\log |w|) \quad$ for arbitrary $g \in \Omega$.
In general, a circular ring with the radial slits satisfying the condition (*) or (**) is called a minimal ring (with the radial slits).

Theorem 2. If $w^{\prime}=\varphi(w)$ is a conformal mapping from a minimal ring G onto a minimal ring G^{\prime} satisfying $\varphi(1)=1$, then $\varphi(w) \equiv w$.

Proof. We set $g(w)=\log |w / \varphi(w)|$. Let C be an arbitrary closed curve in G separating Γ_{2} from other boundaries, and σ_{i} the subdomain bounded by C and $\Gamma_{i}(i=1,2)$. These images are denoted by $C^{\prime}, \Gamma_{1}^{\prime}$, $\Gamma_{2}^{\prime}, \sigma_{1}^{\prime}$ and σ_{2}^{\prime} respectively. Let g_{1} be the smooth function which coincides with g in σ_{1} and vanishes on Γ_{2}. The function g_{1} belongs to $\mathscr{\Omega}$. Setting $g_{2}=g-g_{1}$, from the minimal property of G and G^{\prime}

$$
\begin{gathered}
D(\log |w|, g)=D\left(\log |w|, g_{2}\right)=\int_{\Gamma_{2}} g_{2} d \theta=2 \pi \log r / r^{\prime} \\
D(\log |\varphi(w)|, g)=D\left(\log \left|w^{\prime}\right|, g_{2}\right)=\int_{\Gamma_{2}^{\prime}} g_{2} d \theta^{\prime}=2 \pi \log r / r^{\prime}
\end{gathered}
$$

Hence we have

$$
D(\log |w / \varphi(w)|)=D(\log |w|-\log |\varphi(w)|, g)=0
$$

By the condition $\varphi(1)=1$ we have $\varphi(w) \equiv w$.
(Q. E. D.)

Let G be an arbitrary minimal ring and $\left\{G_{n}\right\}$ its exhaustion. Let f_{n} the function which maps conformally G_{n} onto a circular ring with the radial slits. The limiting function f_{0} maps G conformally onto a minimal ring, and by Theorem 2 we have $f_{0}(w) \equiv w$.

Theorem 3. The area measure of the set of radial slits of a minimal ring is zero.

Theorem 4. Let G be the circular ring $r<|w|<1$ with radial slits, $\{C\}$ be a family of rectifiable curves in G binding Γ_{1} and Γ_{2}, and λ_{c} the extremal length of $\{C\}$. The necessary and sufficient condition for G to be minimal is

$$
\lambda_{c}=(2 \pi)^{-1} \log 1 / r
$$

Proof. 1° (Necessarity). Let $\left\{G_{n}\right\}$ be an exhaustion of $G,\{C\}_{n}$ a family of curves in G_{n} binding Γ_{1} and Γ_{2}, λ_{n} the extremal length of $\{C\}_{n}$. Then $\lambda_{n} \rightarrow \lambda$. If we map G_{n} conformally onto a minimal ring $G_{n}^{\prime}, r_{n}<|w|<1$, then, from the conformal invariance of the extremal length and the finite connectivity of G_{n}, we obtain the corresponding extremal length $\lambda_{n}=(2 \pi)^{-1} \log 1 / r_{n}$. If G is minimal then $r_{n} \rightarrow r$, and therefore we obtain $\lambda=(2 \pi)^{-1} \log 1 / r$.
2° (Sufficiency). We map G_{n} onto G_{n}^{\prime} by the extremal function f_{n}. Let $d_{1}, d_{2}, \cdots, d_{N(n)}$ be the radial segments binding Γ_{1}^{\prime} and Γ_{2}^{\prime} which
involve the images of $\delta_{1}, \cdots, \delta_{N(n)}$. Let $G_{k}^{(n)}$ be the domain bounded by $d_{k-1}, d_{k}, \Gamma_{1}^{\prime}$ and $\Gamma_{2}^{\prime},\left\{C^{\prime}\right\}_{k}^{(n)}$ the family of rectifiable curves in $G_{k}^{\prime(n)}$ binding Γ_{1}^{\prime} and $\Gamma_{2}^{\prime}, \lambda_{k}^{(n)}$ the corresponding extremal length and $G_{k}^{(n)}$ the image of $G_{k}^{\prime(n)}$ by $f_{n}^{-1}\left(w^{\prime}\right)$. If we map conformally $G_{k}^{(n)}$ onto a domain $B_{k}^{(n)}$ in the ζ-plane bounded by two radial segments and two circular arcs $|\zeta|=1$ and $|\zeta|=r$, by the function $\zeta=\phi(w)$ the module of $B_{r}^{(n)}$ is equal to $\lambda_{k}^{(n)}$. The Dirichlet integrals of $G_{n}, G_{k}^{(n)}$ and $B_{k}^{(n)}$ are denoted by $D_{n}(\quad), D_{k}^{n}(\quad)$ and $D_{k}^{n}[\quad]$ respectively.

Since the function g of the class Ω belongs to $\mathscr{R}_{G_{n}}$, we have by the harmonicity of $\log |\zeta|$

$$
\begin{aligned}
D_{k}^{(n)}(\log |w|+g) & =D_{k}^{(n)}\left[\log \left|\phi^{-1}(\zeta)\right|+g\right] \\
& \geqq D_{k}^{(n)}[\log |\zeta|] \\
& =\lambda_{k}^{(n)-1}(\log 1 / r)^{2}
\end{aligned}
$$

Since $\lambda_{n}^{-1}=\sum_{k} \lambda_{k}^{(n)-1}$, we have

$$
\begin{aligned}
D(\log |w|+g) & =\lim _{n} D_{n}(\log |w|+g) \\
& =\lim _{n} \sum_{k} D_{k}^{(n)}(\log |w|+g) \\
& \geqq(\log 1 / r)^{2} \lim _{n} \sum_{k} \lambda_{k}^{(n)-1} \\
& =(\log 1 / r)^{2} \lim _{n} \lambda_{n}^{-1} \\
& \left.=\lambda^{-1}(\log 1 / r)^{2}=D(\log |w|) . \quad \text { (Q. E. D. }\right)
\end{aligned}
$$

Theorem 5. Let G be a circular ring with radial slits, and M the projection of the radial slits on the circle $|w|=1$. If the angular measure of M is zero, then G is minimal.
3. Conformal mapping onto a circular ring with the circular slits

In the case of circular slits we have the results analogous to that of radial slits.

Lemma 2. Let h_{1} be the function of $\mathfrak{5}$ taking the constant values $k_{j}(h)$ on δ_{j}. The function h_{1} maximizes the functional

$$
2 \pi k(h)-\int_{\delta} h d h^{*}
$$

in \mathfrak{S}, and the maximizing function is unique.
Theorem 6. There exists a unique function $f_{1} \in \mathscr{F}$ such that

$$
\operatorname{Max}\{2 \pi \log r(f)+A(f)\}=2 \pi \log r\left(f_{1}\right)
$$

The function f_{1} maps the domain Ω conformally onto a concentric circular ring with the circular slits whose measure is zero.

A circular ring with the circular slits is said to be minimal if $D(\arg w, g)=0$ for an arbitrary $g \in \Re$.

Theorem 7. The necessary and sufficient condition for G to be minimal is that the extremal length λ_{T} of the rectifiable closed curves separating Γ_{1} and Γ_{2} is equal to $2 \pi(\log 1 / r)^{-1}$

4. Counterexamples

The converses of Theorems 3 and 5 are not true. That is, there exists the minimal ring such that the angular measure of the projection M of slits is positive (Ex. 1), and there exists the domain which is not minimal, while the area measure of slits is zero (Ex. 2).

Example 1. Consider in the ring $r<|z|<1$ the set of circular slits,

$$
\sigma_{k}(N ; q):|z|=\frac{r+1}{2}, \quad\left|\arg z-\frac{2 k \pi}{N}\right| \leqq \frac{q \pi}{N} \quad(k=1,2, \cdots, N)
$$

for $0<q<1$ and a positive integer N. Let S be the domain bounded by $\Gamma_{1}:|z|=1, \Gamma_{2}:|z|=r$ and $\sigma_{k}(N ; q)$.

Lemma. Let $\{C\}$ be a family of the rectifiable curves binding Γ_{1} and Γ_{2} in S, λ the extremal length of $\{C\}$. For fixed $q, \lambda \rightarrow(2 \pi)^{-1}$ $\log 1 / r$ as $N \rightarrow \infty$.

Proof. Let C_{k} be the closed curve in S encircling $\sigma_{k}(N ; q), F_{k}$ the domain bounded by σ_{k} and C_{k}. We map S conformally onto the domain S^{\prime} in the w-plane bounded by $\Gamma_{1}^{\prime}:|w|=1, \Gamma_{2}^{\prime}:|w|=r_{N}$ and the set of the radial slits

$$
\sigma_{k}^{\prime}(N ; q):\left|w-\frac{r_{N}+1}{2}\right| \leqq \frac{L}{2}, \quad \arg w=\frac{2 k \pi}{N} \quad(k=1,2, \cdots, N)
$$

We denote the images of C_{k} and F_{k} by C_{k}^{\prime} and F_{k}^{\prime} respectively. We can make the module $M=M\left(F_{k}\right)$ of F_{k} be constant as $N \rightarrow \infty$. Since the length of the closed curves in F_{t}^{\prime} separating C_{k}^{\prime} and σ_{r}^{\prime} are at least $2 L$, the area of $F_{k}^{\prime}, I\left(F_{k}^{\prime}\right) \geqq 4 M\left(F_{k}^{\prime}\right) L^{2}$. Therefore,

$$
L^{2} \leqq \frac{1}{4 N} \sum_{i}\left(I\left(F_{k}^{\prime}\right) / M\left(F_{k}^{\prime}\right)\right)<\frac{1}{4 N M} I\left(S^{\prime}\right)<\frac{1}{4 N M} \pi
$$

Hence we have $L \rightarrow 0$ as $N \rightarrow \infty$.
Let $\left\{\gamma^{\prime}\right\}$ be the family of the rectifiable closed curves in S^{\prime} separating Γ_{1}^{\prime} and Γ_{2}^{\prime}. Since the extremal length of $\left\{\gamma^{\prime}\right\}$ is equal to $2 \pi(\log 1 / r)^{-1}$, we can make r_{N} be arbitrarily near to r. Hence, $\lambda=(2 \pi)^{-1} \log 1 / r_{N}$ $\rightarrow(2 \pi)^{-1} \log 1 / r$ as $N \rightarrow \infty$.

Let ε_{n} and $q_{n}<1(n=1,2, \cdots)$ be positive numbers, such that $\varepsilon_{n} \rightarrow 0$ as $N \rightarrow \infty$ and $\Pi q_{n}=p>0$. Consider the set of slits $\sigma_{k}\left(N_{1} ; q_{1}\right)$ in the ring $r<|z|<1$, where N_{1} is taken so large that the extremal length of G is $<\left(1+\varepsilon_{1}\right)(2 \pi)^{-1} \log 1 / r$. This system of slits is denoted by Σ_{1}.

Next, we consider the system of slits Σ_{2};

$$
\begin{aligned}
& \sigma_{k}\left(N_{1}, N_{2} ; q_{1}, q_{2}\right):|z|=\frac{r+1}{2} \\
& \quad\left|\arg z-\left(\frac{2 k_{1} \pi}{N_{1}}+\frac{2 k_{2} \pi}{N_{1} \cdot N_{2}}\right)\right| \leqq \frac{(r+1) q_{1} q_{2} \pi}{2 N_{1} \cdot N_{2}} \quad\left(k_{i}=1,2, \cdots, N_{i}\right),
\end{aligned}
$$

where N_{2} is taken so large that $\lambda<\left(1+\varepsilon_{2}\right)(2 \pi)^{-1} \log 1 / r$.
Thus we define the systems $\Sigma_{1}, \Sigma_{2}, \cdots$, successively. Sum of the
length of slits tends to $\pi(r+1) \prod_{n} q_{n}=\pi(r+1) p>0$, and λ to $(2 \pi)^{-1} \log 1 / r$. By Theorem 4 the limiting domain is minimal, while the angular measure of projection is positive.

Example 2. We consider the system of slits in the ring $r<|z|<1$, s: $\arg z=0 \quad| | z\left|-\frac{r+1}{2}\right| \leqq \frac{1-r}{4}$

$$
s(n): \arg z=\frac{\pi}{n} \quad| | z\left|-\frac{r+1}{2}\right| \leqq \frac{1-r}{4}\left(1-\frac{1}{|n|}\right) \quad(n= \pm 1, \pm 2, \cdots)
$$

$$
s\left(n, n^{\prime}\right): \arg z=\frac{\pi}{n}+\frac{\theta(n)}{3} \cdot \frac{1}{n^{\prime}},\left||z|-\frac{r+1}{2}\right| \leqq \frac{L-r}{4}\left(1-\frac{1}{|n|}\right)\left(1-\frac{1}{\left|n^{\prime}\right|}\right)
$$

$$
\left(n^{\prime}= \pm 1, \pm 2, \cdots\right)
$$

where $\theta(n)$ is the smaller of the arguments of $s(n)$ and $s(n \pm 1)$.
Thus we define the systems $s\left(n, n^{\prime}, \cdots\right)$ successively. Let E be the closure of union of such systems, S_{1} the domain bounded by E, Γ_{1} and Γ_{2}. By Theorem 5, S_{1} is minimal.

Dividing S_{1} to two doubly connected domains $S_{1}^{(1)}$ and $S_{1}^{(2)}$ by the set E and the circle $|z|=\frac{r+1}{2}$. Let E_{1} be the part of E involved in the ring $\frac{r+1}{2}<|z|<1$. We map $S_{1}^{(1)}$ conformally onto the ring $r_{1}<|w|$ <1 in the w-plane by $w=f(z)$.

Since each slit of E_{1} is the boundary element of $S_{1}^{(1)}$ in the sense of Carathéodory, E_{1} corresponds to a disconnected set on circle $|w|=r_{1}$ by f. By the principle of reflection, $f(z)$ can be analytically continued to $S_{1}^{(2)}$.

The image S_{2} of S_{1} by f is the circular ring with the disconnected set on circle $|w|=r$. By Theorem 2, S_{2} is not minimal, while the measure of $f(E)$ is zero.

References

[1] Grötzsch, H.,: Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche, Leipziger Bereichte, 83, 185-200 (1931).
[2] Koebe, P.,: Zur konformen Abbildung unendlich-vielfach zusammenhängender schlichter Bereiche auf Schlitzbereiche, Nach. Ges. Götting, 67-71 (1918).
[3] Sario, L.,: Strong and weak boundary components, Jour. Aanal. Math. (Jerusalem), 5, 389-398 (1956-1957).

