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1. Introduction. In earlier paper 2], we have proved Theorem 1
[2J which is concerned with the semi-continuity of additive functionals
on semi-ordered linear spaces. By the same notion, we shall obtain
some results concerning additive functionals on Boolean algebras.)

Let B be a a-complete ) Boolean algebra. A positive functional m on
B is called a finitely additive measure if the following condition is
satisfied.
(1.1) m(x+y)--m(x)+m(y)

for x, y B with x y-- 0.
Furthermore if the functional m satisfies the following condition

(1.2), m is called a totally additive measure.
(1.2) For a system of mutually orthogonal elements x (i--1, 2,...)
we have

U
il ’I

(1.2) implies (1.1), but the converse does not follow. However, some-
times a finitely additive measure is totally additive on some ideal a)

of B.
If B is a Boolean algebra, then we can consider the representation

space. (This space consists of all dual maximal ideals P of B.) We
denote this space by @. @ constitutes a compact Hausdorff space with
open basis: U-- [p p x}, x e B.

If B is a-complete, then the closure of a a-open set (countable
union of closed sets) of @ is open in @. An ideal Iof B is said to
be dense in B if for any x(0)eB there exists an element y eI with
O =y x.

We shall consider the following property of a-complete Boolean
algebra.

A ) Let An (n--l, 2,...)@ be a-open and dense. Then we can

find an open dense set U@ with U A.
We have also the following property equivalent to (A).
(A’) Let Bn (n--1,2,...)@ be -closed) and no-where dense

1) For the definition of Boolean algebra, see [1, Chapter 10J.
2) B is a-complete if for x (i=l, 2,...), there exists x- U x.
3) MB is an ideal (in Birkhoff’s terminology [1])if aeM, ba implies be M.
4) Complement of a-open set.
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sets in @. Then [J B is no-where dense.

2. Theorem 1. Let B be a a-complete Boolean algebra with the
property (A) and let m be a finitely additive measuve on B. Then
m is totally additive on some dense ideal of B.

Proof. By the same method applied to the proof of Theorem 1
2, we can find a a-open and dense set A @ (k-- 1, 2,...) such that
A U (i- 1, 2,...) and x 7. 0 implies

inf m(x) < 1

By the property (A), we find an open dense set U with

U A.
k-1

If UU (x-I 2,...), and x 0, we see that inf m(x)
(k=l, 2,...), i.e. inf m(x)=O.

Since U is open and dense in , the set I={x:xeB and UU}
is a dense ideal of B. For mutually orthogonal elements x U with

x--xU and y=Ux (i--1,2,...), we have y-(x)-0

and yy..., hence inf m(y)-O, i.e. m(U )-m(). This

proves the theorem.
We shall consider another property of a a-complete Boolean

algebra B.
(B) Let A (n=l, 2,...) be a-open and dense sets in . Then

A contains a a-open dense set.

H. Nakano has proved that (B) is equivalent to the following.)

(B’) For double system x, with x, x; there exist x (k=l,
2,...) and number n(i, k), i, k=l, 2,... with x x and xx,(,).

(B) implies (A), but (A) does not follow (B).
(C) 1st category set in is always no-where dense.

It is easy to see that (C) implies (A).
Remark 1. If B is complete,6 under the hypothesis of continuum,

(B) implies (C).)
Corollary 1. Let B have the property (B)or (C) and m (n=l,

2,...) be finitely additive measures. Then there exists a dense ideal
in which m are totally additive at the same time.

Proof. We shall prove only the case that B has the property (B).
By Theorem I and the property (B), there exist a-open and dense sets
U. (n= 1, 2,...) such that

5) See [3, p. 45].
6) B is complete if for z (2 A)eB, there exists x= [J x.

2A
7) This fact is due to Prof. I. Amemiya.
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U U, x-O, xx imply inf m(x)--O.
By the property (B), we find a a-open and dense set U with

U U. Putting I=[x’UU}, I is a dense ideal of B in which

m (n=l, 2,...) are totally additive at the same time.
Corollary 2. If B is a complete Boolean algebra with the prop-

erty (C), then, for a finitely additive measure m, there exist a
normal measure m’ and dense ideal I of B such that

m(x)m’(x) for x B and m(x)--m’(x) for x I.
Pro@ By the method applied to Theorem 1 2, we can find a

dense ideal IB such that for any system x (2)eI with x0
we have inf m(x)--O.

A

Since I is a dense ideal of B, for any x e B, there exists a system
x I with x ex. If there exist y(y e F) I and x(2 ) I with
y erx, x x, then

sup m(x) sup m(yr).
A F

Hence, if we put
m’(x)--sup m(x) for x-- U x(x I),

A

then m’ satisfies the conditions of Corollary 2.
Remark 2. Theorem 1 is not true in the case that B has not

the property (A). For example, let (0, 1) be an open interval of real
numbers with terminals 0, 1. The complete Boolean algebra C con-
sisting of regularly open sets) in (0, 1) has not the property (A). For,

(the representation space of C) has a dense and countable set
(i-1, 2,...)and any element of is not isolated; therefore

is dense in , and A does not contain any open and dense set.

Furthermore A is a-open set, i.e. C has not the property (A). Let m
be totally additive measure on B. Then m is always 0, i.e. m(x)--O
for every x C. For any p (i-1, 2,...), we can find a sequence x
(j-- 1, 2,...) such that

UO and x--0.
j=l

If m is totally additive, then we can find j with m(x,)e
(i--1, 2,...) where is an arbitrary given positive number. Because
{p} (i-1, 2,...) is dense in , we see that

1-- x, (1 is maximal element of C)

8) m is called a normal measure if x T eax implies m(x)=sup
A

9) This fact is independent from the cardinal number of A or F.
10) E is called a regularly open set if interior of E is E.
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and

re(l)< , m(x.)<s + s.

Since we can choose arbitrary, we have re(l)-0. Hence m(x)--O
for x e C. Furthermore there exists a finitely additive measure m on

1B such that re(x)>0 for x(O)eB. For instance, putting f(p)--2%
if xep and f(P)-0 if xp, we see that m(x)-f(p), xeC is

finitely additive measure on C. Thus C is an example which does
not follow Theorem 1.

3. Applications. Let R be a totally continuous and super-uni-
versally continuous semi-ordered linear space. H. Nakano studied
modulared linear spaces. We shall apply Theorem 1 2 to finite
modulars without proof.

Theorem 2. Let m be a functional on R which satisfies modular
conditions except semi-continuity axiom, but is coecient-continuous.
Then there exists a complete semi-normal manifold of R in which m

satisfies modular conditions.

R is called semi-regular if (a)--0 (for all e R) TM imply a--0.
In the case that R is semi-regular, we can define such that

sup

where R"*) is the modular conjugate space of R and ()--sup[(a)
a

--re(a)} for eR’’. Furthermore, if m is a modular, then (a)--m(a)
for all a R.

Theorem 3. Let m be a functional on semi-regular space R
which satisfies the conditions of Theorem 2. Then m-- on some
complete semi-normal manifold.

A norm a[, aeR is said to be L-type norm if a0, b0 imply
t norm []al] is said to be continuous if a

implies inf ][a]--0. It is well known that if [ [[ is complete, then

[ is continuous.
Theorem 4. If there exists an L-type norm on R, then this norm

coincides with some continuous norm on some complete semi-normal
manifold.

Remark 3. Theorems 2, 3, 4 do not remain true if R is not totally
continuous. For instance the totality of continuous functions defined

11) For the definition of modulars, see [3].
12) See [2].
13) R is the totality of universally continuous linear functionals on R (see [3J).
14) See [3].
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on in the former remark is not totally continuous and an example
which does not follow Theorems 2, 3, 4.
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