26. On Semi-continuity of Functionals. II

By Shōzō Koshi

Mathematical Institute, Hokkaidō University (Comm. by K. KUNUGI, M.J.A., March 12, 1959)

1. Introduction. In earlier paper [2], we have proved Theorem 1 [2] which is concerned with the semi-continuity of additive functionals on semi-ordered linear spaces. By the same notion, we shall obtain some results concerning additive functionals on Boolean algebras.¹⁾ Let B be a σ -complete²⁾ Boolean algebra. A positive functional m on B is called a *finitely additive measure* if the following condition is satisfied.

(1.1) m(x+y) = m(x) + m(y)

for
$$x, y \in B$$
 with $x \frown y = 0$.

Furthermore if the functional m satisfies the following condition (1.2), m is called a *totally additive measure*.

(1.2) For a system of mutually orthogonal elements x_i $(i=1, 2, \cdots)$ we have

$$m(\bigcup_{i=1}^{\infty} x_i) = \sum_{i=1}^{\infty} m(x_i)$$

(1.2) implies (1.1), but the converse does not follow. However, sometimes a finitely additive measure is totally additive on some ideal³⁾ of B.

If B is a Boolean algebra, then we can consider the representation space. (This space consists of all dual maximal ideals \mathfrak{p} of B.) We denote this space by \mathfrak{E} . \mathfrak{E} constitutes a compact Hausdorff space with open basis: $U_x = \{\mathfrak{p} : \mathfrak{p} \ni x\}, x \in B$.

If B is σ -complete, then the closure of a σ -open set (countable union of closed sets) of \mathfrak{S} is open in \mathfrak{S} . An ideal I of B is said to be *dense* in B if for any $x(\pm 0) \in B$ there exists an element $y \in I$ with $0 \pm y \leq x$.

We shall consider the following property of σ -complete Boolean algebra.

(A) Let A_n $(n=1, 2, \dots) \subset \mathfrak{S}$ be σ -open and dense. Then we can find an open dense set $U \subset \mathfrak{S}$ with $U \subset \bigcap_{n=1}^{\infty} A_n$.

We have also the following property equivalent to (A).

(A') Let B_n $(n=1, 2, \dots) \subset \mathfrak{G}$ be δ -closed⁴⁾ and no-where dense

1) For the definition of Boolean algebra, see [1, Chapter 10].

2) B is σ -complete if for x_i $(i=1, 2, \cdots)$, there exists $x = \bigcup_{i=1}^{m} x_i$.

- 3) $M \subset B$ is an ideal (in Birkhoff's terminology [1]) if $a \in M$, $b \leq a$ implies $b \in M$.
- 4) Complement of σ -open set.

On Semi-continuity of Functionals. II

sets in \mathfrak{E} . Then $\bigcup_{n=1}^{\infty} B_n$ is no-where dense.

2. Theorem 1. Let B be a σ -complete Boolean algebra with the property (A) and let m be a finitely additive measure on B. Then m is totally additive on some dense ideal of B.

Proof. By the same method applied to the proof of Theorem 1 [2], we can find a σ -open and dense set $A_k \subset \mathfrak{S}$ $(k=1, 2, \cdots)$ such that $A_k \supset U_{x_i}$ $(i=1, 2, \cdots)$ and $x_i \downarrow_{i=1}^{\infty} 0$ implies

$$\inf_i m(x_i) \leq \frac{1}{k}.$$

By the property (A), we find an open dense set $U \subset \mathfrak{S}$ with $U \subset \bigcap_{k=1}^{\infty} A_k$.

If $U \supset U_{x_i}$ $(x_i=1, 2, \cdots)$, and $x_i \downarrow_{i=1}^{\infty} 0$, we see that $\inf_i m(x_i) \leq \frac{1}{k}$ $(k=1, 2, \cdots)$, i.e. $\inf_i m(x_i) = 0$.

Since U is open and dense in \mathfrak{G} , the set $I = \{x : x \in B \text{ and } U_x \subset U\}$ is a dense ideal of B. For mutually orthogonal elements $x_i \in U$ with $\bigcup_{i=1}^{\infty} x_i = x \in U$ and $y_j = \bigcup_{i=j}^{\infty} x_i$ $(i=1, 2, \cdots)$, we have $\bigcap_{j=1}^{\infty} y_j = \bigcap_{j=1}^{\infty} (\bigcup_{i=j}^{\infty} x_i) = 0$ and $y_1 \ge y_2 \ge \cdots$, hence $\inf_j m(y_j) = 0$, i.e. $m(\bigcup_{i=1}^{\infty} x_i) = \sum_{i=1}^{\infty} m(x_i)$. This proves the theorem.

We shall consider another property of a σ -complete Boolean algebra B.

(B) Let A_n $(n=1, 2, \cdots)$ be σ -open and dense sets in \mathfrak{E} . Then $\bigcap_{n=1}^{\infty} A_n$ contains a σ -open dense set.

H. Nakano has proved that (B) is equivalent to the following.⁵⁾

(B') For double system $x_{i,j}$ with $x_{i,j} \uparrow_j x$; there exist x_k (k=1,

2,...) and number n(i, k), $i, k=1, 2, \cdots$ with $x_k \uparrow_k x$ and $x_k \leq x_{i,n(i,k)}$. (B) implies (A), but (A) does not follow (B).

(C) 1st category set in \mathfrak{E} is always no-where dense.

It is easy to see that (C) implies (A).

Remark 1. If B is complete,⁶⁾ under the hypothesis of continuum, (B) implies (C).⁷⁾

Corollary 1. Let B have the property (B) or (C) and m_n $(n=1, 2, \cdots)$ be finitely additive measures. Then there exists a dense ideal in which m_n are totally additive at the same time.

Proof. We shall prove only the case that B has the property (B). By Theorem 1 and the property (B), there exist σ -open and dense sets $U_n \subset \mathfrak{E}$ $(n=1, 2, \cdots)$ such that

No. 3]

⁵⁾ See [3, p. 45].

⁶⁾ B is complete if for x_{λ} ($\lambda \in A$) $\in B$, there exists $x = \bigcup_{\lambda \in A} x_{\lambda}$.

⁷⁾ This fact is due to Prof. I. Amemiya.

S. Koshi

 $U_n \supset U_{x_i}$, $\bigcap_{i=1}^{\infty} x_i = 0$, $x_1 \ge x_2 \ge \cdots$ imply $\inf_i m_n(x_i) = 0$.

By the property (B), we find a σ -open and dense set U with $U \subset \bigcap_{n=1}^{\infty} U_n$. Putting $I = \{x : U_x \subset U\}$, I is a dense ideal of B in which m_n $(n=1, 2, \cdots)$ are totally additive at the same time.

Corollary 2. If B is a complete Boolean algebra with the property (C), then, for a finitely additive measure m, there exist a normal measure⁸⁾ m' and dense ideal I of B such that

 $m(x) \ge m'(x)$ for $x \in B$ and m(x) = m'(x) for $x \in I$.

Proof. By the method applied to Theorem 1 [2], we can find a dense ideal $I \subset B$ such that for any system x_{λ} ($\lambda \in A$) $\in I$ with $x_{\lambda} \downarrow_{\lambda} 0$ we have $\inf_{X \in I} m(x_{\lambda}) = 0$.

Since *I* is a dense ideal of *B*, for any $x \in B$, there exists a system $x_{\lambda} \in I$ with $x_{\lambda} \uparrow_{\lambda \in A} x$. If there exist $y_{\tau}(\tau \in \Gamma) \in I$ and $x_{\lambda}(\lambda \in A) \in I$ with $y_{\tau} \uparrow_{\tau \in \Gamma} x$, $x_{\lambda} \uparrow_{\lambda \in A} x$, then

$$\sup_{\lambda \in \Lambda} m(x_{\lambda}) = \sup_{r \in \Gamma} m(y_r).$$

Hence, if we put

 $m'(x) = \sup_{\lambda \in A} m(x_{\lambda})$ for $x = \bigcup_{\lambda \in A} x_{\lambda}(x_{\lambda} \in I)$,

then m' satisfies the conditions of Corollary 2.

Remark 2. Theorem 1 is not true in the case that *B* has not the property (A). For example, let (0, 1) be an open interval of real numbers with terminals 0, 1. The complete Boolean algebra *C* consisting of regularly open sets¹⁰⁾ in (0, 1) has not the property (A). For, \mathfrak{E} (the representation space of *C*) has a dense and countable set $\{\mathfrak{p}_i\}$ $(i=1, 2, \cdots)$ and any element of \mathfrak{E} is not isolated; therefore $\mathfrak{E}-\mathfrak{p}_i=A_i$ is dense in \mathfrak{E} , and $\bigcap_{i=1}^{\infty} A_i$ does not contain any open and dense set. Furthermore A_i is σ -open set, i.e. *C* has not the property (A). Let *m* be totally additive measure on *B*. Then *m* is always 0, i.e. m(x)=0for every $x \in C$. For any \mathfrak{p}_i $(i=1, 2, \cdots)$, we can find a sequence $x_{ij} \downarrow_j$ $(j=1, 2, \cdots)$ such that

$$\mathfrak{E} \supset U_{x_{ij}} \mathfrak{i}_{p_i} \quad \mathrm{and} \quad \bigcap_{j=1}^{\infty} x_{i,j} = 0.$$

If *m* is totally additive, then we can find j_i with $m(x_{i,j_i}) \leq \varepsilon \frac{1}{2^i}$ $(i=1, 2, \cdots)$ where ε is an arbitrary given positive number. Because $\{\mathfrak{p}_i\}$ $(i=1, 2, \cdots)$ is dense in \mathfrak{E} , we see that

 $1 = \bigcup_{i=1}^{\infty} x_{i,j_i}$ (1 is maximal element of C)

⁸⁾ *m* is called a normal measure if $x_{\lambda} \uparrow_{\lambda \in A} x$ implies $m(x) = \sup_{\lambda \in A} m(x_{\lambda})$.

⁹⁾ This fact is independent from the cardinal number of Λ or Γ .

¹⁰⁾ E is called a regularly open set if interior of \overline{E} is E.

No. 3]

$$m(1) \leq \sum_{i=1}^{\infty} m(x_{i,j_i}) \leq \varepsilon \left(\frac{1}{2} + \frac{1}{2^2} + \cdots\right) = \varepsilon.$$

Since we can choose ε arbitrary, we have m(1)=0. Hence m(x)=0for $x \in C$. Furthermore there exists a finitely additive measure m on B such that m(x)>0 for $x(\pm 0) \in B$. For instance, putting $f_x(\mathfrak{p}_i)=\frac{1}{2^i}$ if $x \in \mathfrak{p}_i$ and $f_x(\mathfrak{p}_i)=0$ if $x \in \mathfrak{p}_i$, we see that $m(x)=\sum_{i=1}^{\infty}f_x(\mathfrak{p}_i)$, $x \in C$ is finitely additive measure on C. Thus C is an example which does not follow Theorem 1.

3. Applications. Let R be a totally continuous and super-universally continuous semi-ordered linear space. H. Nakano studied modulared linear spaces. We shall apply Theorem 1 [2] to finite modulars without proof.

Theorem 2. Let m be a functional on R which satisfies modular¹¹⁾ conditions except semi-continuity axiom, but is coefficient-continuous.¹²⁾ Then there exists a complete semi-normal manifold of R in which m satisfies modular conditions.

R is called semi-regular if $\overline{a}(a)=0$ (for all $\overline{a} \in \overline{R}$)¹³⁾ imply a=0. In the case that *R* is semi-regular, we can define $\overline{\overline{m}}$ such that

$$\overline{\overline{m}}(a) = \sup_{\overline{a} \in \overline{R}^m} \{\overline{a}(a) - \overline{m}(\overline{a})\}$$

where $\overline{R}^{m\,14}$ is the modular conjugate space of R and $\overline{m}(\overline{a}) = \sup_{a \in \overline{R}} \{\overline{a}(a) - m(a)\}$ for $\overline{a} \in \overline{R}^m$. Furthermore, if m is a modular, then $\overline{\overline{m}}(a) = m(a)$ for all $a \in R$.

Theorem 3. Let m be a functional on semi-regular space R which satisfies the conditions of Theorem 2. Then $m = \overline{\overline{m}}$ on some complete semi-normal manifold.

A norm ||a||, $a \in R$ is said to be L-type norm if $a \ge 0$, $b \ge 0$ imply ||a+b|| = ||a|| + ||b||. A norm ||a|| is said to be continuous if $a_{\lambda} \downarrow_{\lambda \in A} 0$ implies $\inf_{\lambda \in A} ||a_{\lambda}|| = 0$. It is well known that if || || is complete, then || || is continuous.

Theorem 4. If there exists an L-type norm on R, then this norm coincides with some continuous norm on some complete semi-normal manifold.

Remark 3. Theorems 2, 3, 4 do not remain true if R is not totally continuous. For instance the totality of continuous functions defined

¹¹⁾ For the definition of modulars, see [3].

¹²⁾ See [2].

¹³⁾ \overline{R} is the totality of universally continuous linear functionals on R (see [3]).

¹⁴⁾ See [3].

on \mathfrak{E} in the former remark is not totally continuous and an example which does not follow Theorems 2, 3, 4.

References

- [1] G. Birkhoff: Lattice Theory, Amer. Math. Col. (1948).
- [2] S. Koshi: On semi-continuity of functionals. I, Proc. Japan Acad., 34, 513 (1958).
- [3] H. Nakano: Modulared Semi-ordered Linear Space, Tokyo Math., Book series (1950).