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50. Between-topology on a Distributive Lattice

By Yatar0 MATSUSHIMA
Gunma University, Maebashi
(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

1. It is well known that the interval topology of a lattice L is
defined by taking the closed intervals [a)={z|x=a}, (a¢]={z|x=<a}
and [a,b]={x|a<x=<b} as a sub-basis for closed sets. In [1-2] we
have considered ‘the concept of B-covers in lattices. For any two
elements a and b of a lattice L, let

B(a, b)={z|(a—2)~(b—2)=2x=(a~2)—(b~2)}; then B(a,bd) is
called the B-cover of a and b, and we write axb when x¢B(a,b).
Let B*(a,b)={x|abx}.

Now we shall define the between-topology on L as follows. By
the B-topology (B*-topology) of a lattice L, we mean that defined by
taking the sets B(a,b) (B*(a,b)) as a sub-basis of closed sets.

In Theorem 1 we shall prove that the B-topology coincides with
the interval topology in case L is a distributive lattice with O, L
It is shown in Theorem 2 that L, is a topological lattice in its B*-
topology when L, is a distributive lattice such that for any subset
B(a, b) of L, if x,yeB(a,b), then a~2 and a~y; b~z and b~y are
comparable respectively.

E. S. Wolk [5] has defined that a subset X of a lattice L is diverse
if and only if xz¢S, yeS, and 2=y imply that « and y are non-com-
parable. He showed that if L contains no infinite diverse set then L
is a Hausdorff space in its interval topology.

Now we shall consider a distributive lattice L, with O, I satisfy-
ing the same assumption as in Theorem 2. Then in Theorem 3 we
shall prove, by using the concept of the B-covers instead of that of
diverse sets, that a certain type of L, is a Hausdorff space in its
interval topology. This theorem is concerned with the Problem 23 of
Birkhoff [3].

A mobd is defined as a Hausdorff space with a continuous associative
multiplication. In Theorem 4 we shall show that a distributive lattice
L, with O, I such that L,=B(a,,b,) is a mob with the desired kernel
B(a, b) and with the multiplication defined as follows:

2y=(a—ux)~(b—y) for the fixed two elements a,b of L.

2. Lemma 1. In a distributive lattice, x< B(a,b) if and only if
a~b=x=<a—>b.

Proof. This is proved in [1, Theorem 3].

Theorem 1. In a distributive lattice L with O, I the B-topology
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coincides with the interval topology.

Proof. By Lemma 1 B(a,b)=[a~b, a~~b]. On the other hand,
[@), (@] and [a,b] are expressed by the sets of the type B(a,b).
Indeed [a)=B(a,I), (¢]=B(0,a) and [a,b]=B(a,b).

Lemma 2. In a lattice L, B*(a,b)sx—y implies xcB*(a—b,b)
and yeB*(a—b,b). B*(a,b)sx~y implies xcB*(a~b,b) and yeB*
(ar‘\b, b).

Proof. Suppose that x€ B*(a—b,b); then (a—b)~(b—x) does not
equal to b, and hence we have (a—b)~(b—2x)>b. It follows that
ab(x~y) does not hold since (a—b)~(b—z—y)= (a—b)~(b—x)>b.
Thus either zeB*(a—b,b) or yeB*(a—b,b) implies x—yeB*(a,bd),
that is, —yec B*(a, b) implies xe B*(a—b, b) and y<c B*(a—b, b). Dually
x~yeB*(a,b) implies e B*(a~b,b) and ye B*(a~b,b).

Lemma 8. In a distributive lattice L, if x¢ B*(a~—b,b) and
yeB*(a, b), then x~—y belongs to B*(a,b). Dually xcB*(a~b,b) and
yeB*(a, b) tmply x~yeB*(a,b).

Proof. Since L is distributive we have (a-b)~2x=<b=a-b-uz,
a~y=b=<a-y by Lemma 1. Then b=<av-bx—y=a-—x—y since
a—y=b as above. b=(a-b)~x=a~2x, b=a~y imply b=(a~x)—
(a~y)=a~(x—y). Thus we have ab(x-—y) by Lemma 1. Similarly
we have the dual case.

Lemma 4. Let L, be a distributive lattice satisfying the follow-
ing condition (A):

(A) For any subset B(a,b) in L, if x,ye B(a,b), then a~x and
a~y; b~x and b~y are comparable respectively.

Then in L, x, Y€ B*(a, b) and x, yc B*(a~b, b) imply x—y<c B*(a,b)
and x~yeB*(a—b,b).

Proof. From xzeB*(a‘—b,b) and z€ B*(a, b) we have (a~b)—(b~x)
<b. Similarly (a~b)—(b~y)<b. Put P=(a~b)—(b~x), =(a~b)— (b~
). Then (a~~P)~ (b~ P)=(a((a~b)~ (b~ x)))~(b—((a~b)~(b~x)))=
(a~(b~2))~b=(a~b)—(b~2z)=P, and (a~P)—(b~P)=(a~((a~b)~
(b~2))~ (b~ ((a~b)~ (b~2)))=(a~b)~(a~b~z)—(a~b)—(b~2)=(a~
b)—(b~x)=P by distributive law, that is, PeB(a,b). Similarly QeB
(a,b). Hence b~P=P and b~Q=Q are comparable by the hypothesis.
Accordingly we have (a~b)—(b~(x—¥))=(a~b)—(b~x)—(a~b)—
(b~y)=P-—Q<b since either P<Q<b or Q<P<b, that is, x~y< B*(a,
b). It is easily shown that x—yeB*(a—b, b) from x, yec B*(a—b, D).

Theorem 2. Let L, be a distributive latiice satisfying the com-
dition (A), then L, is a topological lattice im its B*-topology.

Proof. We shall prove the continuity of the join operation x—y.
By Lemmas 2, 8 and 4 we have x—y¢€B*(a,b) if and only if one of
the following conditions occurs:

(1) x€B*(a,b) and yeB*(a,b)
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(2) xz<B*(a—b,bd);

(8) wyeB*awb,b).

Hence we can prove the continuity of #—y. Similarly we can prove
the continuity of x~y.

3. Definition. When B*(a,b)=b for some a in a lattice, we shall
say that b is extreme for a, and denote this fact by (a,b)E. (a,bd) is
called an extreme pair when B*(a,b)=b and B*(b, a)=a; in this case
we shall write (a, b)E,.

Lemma 5. If a and a’ are complemented, then (a,a’)E,.

Proof. If aa’z, then oa'=(a~a')—(a'~x)=0a ~x, o' =(a—a)~
(¢/~x)=a'~vx from a~a'=0, a—a'=1I, and hence a'=x. Similarly
if a’ax, then a=uw.

Lemma 6. If (a,b)E,, then a does mot belong to any B(d/,b)
such that aa’ and a',b are non-comparable.

Proof. If aeB(a/,b), then a’ab, that is, a’e B*(b, a), this con-
tradicts (a, D)E,.

If (@, b) is a non-comparable pair which is (e, b)E,, B(a,b) is called
a maximal extreme B-cover.

Hereafter let L, be a distributive lattice with O, I satisfying the
condition (A).

Lemma 7. If L, consists of a finite number of maximal extreme
B-covers and a chain, then L, is uniquely expressed as follows:

(B) L=ii B(a, b)+C,* where B(a,b) are maximal extreme
=1

B-covers such that a,, b, are non-comparable, and C is a chain.

Proof. It is proved from Lemmas 1,5 and 6 and the condition
(A).

Lemma 8. If B(a,b)sx in a distributive lattice L,, then B(a,b)
= B(a, b~x)— B(b, a~x).

Proof. If we take yeB(a, b~x)— B(b, a—x), then a ~b=y=<a-b,
hence yeB(a,b). Conversely if we take ye¢B(a,b) then b~y=b~zx
implies a~y=a-x, since a—(b~y)=a—(b~2), and a—(b~y)=(a—Db)
~(a~y)=av-y and a—(b~x)=a—x. Similarly a—xr=a-y implies
b~x=b~y. Accordingly we have either b~y=b~zx or a—ax=a-y
since b~2 and b~y are comparable in L,. In the first case we have
a~b=>y=>b~x, that is, ye B(b, a~~%), and in the second case we have
a—x=y=a~b, that is, ye B(a, b~x).

Lemma 9. If Ly=B(a,b,), where a, b, are non-comparable ex-
treme pair, them L, 1s a Hausdorff space in its interval topology.

Proof. Let a,b be distinet elements of L,. From [4] we can
prove that there is a covering of L, by means of a finite number of
closed intervals such that no interval contains both ¢ and b.

* N + denote the set-theoretical unions.
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(a) The case where a,b are non-comparable
Since L, is distributive and a, be L,= B(a,, b,), we have either a,ab
or aba by (A). We shall consider first the case a,ab. Then abb, by
[1, Lemma 8]. In this case L, is represented in the following form
by Lemma 8.
Ly= B(ay, a)~ B(b, b,)~ [a)— [b)—(a]-(b]~ B(a, b). (1)
In (1), if B(a,b)={a, b, a~b, a~b}, then we have B(a, b)=[a, a~b]
—[a~b,b], and if B(a,b) contains # which is distinct from a, b, a~b
and a—b, then we have B(a,b)=B(a,b~xz)—B(b, a~x) by Lemma 8.
Thus we have a covering of L, which has a desired form. In case
aba we can proceed similarly.
Consequently we have a covering of L, by means of a finite
number of closed intervals such that no interval contains both @ and b.
(b) The case where a,b are comparable
Suppose that a>b. If there is no « such that a>x>b, then one
of the following coverings of L, is desired form by [2, §4 (3)].
L,= B(a, b))~ B(a,, b)~ [a)—(b],

L= B(a, a,)~ B(b, b))~ [a)—(b]. (2)
If there is « such that a>x>b, then put
Ly=B(, a,)~ B, b))~ [@)— (x]. (3)

In (8), if B(x, a,) contains both a¢ and b, then we shall divide it
into parts as follows. If there is no y such that a>y >z, then let
B(a,, )= B(a, a,)~ B(b, a,)— [b, #]. In case there is y such that a>y >z,
then let B(a,, x)=B(y, a,)~(y], then we shall have the desired inter-
vals.

If B(x,b,) contains both ¢ and b in (3), we shall be able to divide
it into the desired intervals similarly.

Theorem 3. If L, s a distributive lattice with O, I and if it
satisfies the conditions (A) and (B), them L, is a Hausdorf space
wn its interval topology.

Proof. The theorem follows immediately from Lemmas 7 and 9.

4. Now we shall introduce a multiplication in a distributive lattice.

Definition. We shall define xy=(a—x)~(b~y) for fixed two
elements a,b of L.

Lemma 10. x(y2)=(zy)z in L.

Proof. a(yz)=(a—2)~ (b ((a~y)~(b~2))) = (a~2)~(a~b—y)~
(b2), (zy)e=(a~((a—z)~(b—y))~(b—2)=(a—2)~(a—b—y)~(b—2).

Lemma 11. If xeB(a,b) and yecL, then we have

(1) zex=w,

(2) =yeB(a,bdb), yxeB(a,b).

Proof. Since (1) is immediate from the definition, we shall prove
(2).

(a—2y) ~(b—wzy) = (a (@~ 2) ~(b~y)) ~ (b~ (a~x)~(b~¥))) = (a~x)
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~(a~b—y)~(a~b—x)~(b—y) = (a—x)~(b—y)=ny; similarly (a~zy)
—(b~xy)=xy. Thus L is a semigroup with the kernel B(a,b).

Theorem 4. Let L, be a distributive lattice with O, I such that
L,=B(a,, b,) satisfies the condition (A), where a,, b, are non-comparable
extreme pair. Then the multiplication xy = (a—x)~(b—y) is con-
tinuous in its interval topology, that is, L, is a mob which has the
desired kermel B(a,b).

Proof. Suppose that xy=(a—2x)~(b—y) belongs to some B-cover
B(e, d). Since a,b, ¢, de B(ay, b,) we shall prove the continuity for xy
in case a,ab, ach, adb, and acd. Then a,ab, adb imply a,ad by [1,
Lemma 4] and a.,ad, acd imply a,cd by [1, Lemma 8]. Hence cdb,
by [1, Lemma 3]. By [1, Lemma 2] we have a,—~d=a,—c¢, by~ c=b,—d
and a,~c=a,~d and b,~d=b,~c.

From a,—(b,~c)=a, ¢, a,—(by~d)=a,—d, (@)~ d)~(by~c)=c—d,
(ag~e)~(by~d)=c~d and [2, §4 (8)], if x€B(by~c, a,~d), then we
have either a,—z>a,—d or a,—x<a,—c.

If ay—x>a,—d, then we have a—x>a—d and (a,—x)~b,>b,~d
by [2, §4 (8)], hence xyecB(ayb,)—(a,~d] since a—x, beB(a,,b,)
—(ay~d], and if a,~x<a,—c, then we have zy< B(c, d) similarly.
y€B(ay~d, by—~c) implies xy€B(c,d) in the same way. Hence x¢
B(by~c, ay~d) or yeB(ay~d, by—~c) implies xy < B(c, d).

Conversely if xeB(by~c¢, a;~d) and ye B(a,~d, by, ~c), then zye
B(e, d), that is, xy<B(c,d) implies x€B(b,~c¢, a,~d) or yeB(a,~d,
by—~c). This completes the proof.

Corollary. Let L, be a distributive lattice with O, I satisfying
the conditions (A) and (B); then L, is a mob.
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