46. Some Remarks on Inner Product in Product Space of Unitary Spaces

By Chen-Jung HSU*)

Tohoku University, and National Taiwan University, Formosa (Comm. by K. KUNUGI, M.J.A., May 7, 1959)

1. Let V be a unitary space over reals or complex numbers, and (x, y) be the inner product defined in it. It is known that inner product can be defined in the tensor product $V^r = V \otimes \cdots \otimes V$ (r factors in number) which satisfies: $[2, 3]^{**}$

 $(x_1 \otimes x_2 \otimes \cdots \otimes x_r, y_1 \otimes y_2 \otimes \cdots \otimes y_r) = (x_1, y_1)(x_2, y_2) \cdots (x_r, y_r).$

This function, when restricted to the subspace of alternate elements $\mathcal{A}(V^r)$ and the subspace of symmetric elements $\mathcal{S}(V^r)$ of V^r , gives rise respectively to inner product of the space of exterior rvectors $\Lambda^r(V)$ and $P^r(V)$ (to be defined below), since these spaces are respectively isomorphic to $\mathcal{A}(V^r)$ and $\mathcal{S}(V^r)$.

If u is the conjugate isomorphism between V and its dual (conjugate) space V^* , then

$$\langle x, u(y) \rangle = (x, y)$$
 for all $x \in V$,

where $\langle x, y^* \rangle$ is the pairing of V and V* to scalars.

Denote by $u^r: V^r \to V_r = V^* \otimes \cdots \otimes V^*$ (r factors in number) the r-th tensor power of u, then u^r is an isomorphism between V^r and V_r and

$$u^r(x_1 \otimes \cdots \otimes x_r) = u(x_1) \otimes \cdots \otimes u(x_r).$$

Moreover, if $\Lambda^r u : \Lambda^r(V) \to \Lambda^r(V^*)$ is the *r*-th exterior power of *u*, then $\Lambda^r u$ is an isomorphism between $\Lambda^r(V)$ and $\Lambda^r(V^*)$ and

 $(\Lambda^r u)(x_1 \wedge \cdots \wedge x_r) = u(x_1) \wedge \cdots \wedge u(x_r).$

As it is known that $(V^r)^* \approx V_r$ and $(\Lambda^r(V))^* \approx \Lambda^r(V^*)$, we can identify the isomorphic spaces.

Now, we propose to show:

Theorem 1. u^r is the conjugate isomorphism between V^r and $V_r = (V^r)^*$, and $\Lambda^r u$ is the conjugate isomorphism between $\Lambda^r(V)$ and $\Lambda^r(V^*) = (\Lambda^r(V))^*$.

Proof. For any
$$x_1 \otimes \cdots \otimes x_r$$
 and $y_1 \otimes \cdots \otimes y_r$ in V^r , we have
 $\langle x_1 \otimes \cdots \otimes x_r \quad u^r(y_1 \otimes \cdots \otimes y_r) \rangle$
 $= \langle x_1 \otimes \cdots \otimes x_r \quad u(y_1) \otimes \cdots \otimes u(y_r) \rangle$
 $= \langle x_1 \quad u(y_1) \rangle \cdots \langle x_r \quad u(y_r) \rangle$

^{*)} I wish to express my cordial thanks to Prof. S. Sasaki for his kind guidance and encouragement.

^{**)} In the sequel we follow the notation of S. S. Chern [2]. The number in bracket denotes the references at the end of this paper.

C.-J. Hsu

$$=(x_1 \ y_1)\cdots(x_r \ y_r)$$
$$=(x_1\otimes\cdots\otimes x_r \ y_1\otimes\cdots\otimes y_r).$$

The general relation $\langle x \ u(y) \rangle = (x \ y)$ follows from the bilinearity of $\langle x \ y \rangle$ and linearity of u^r .

Next, under the isomorphism between $\Lambda^r(V)$ and $\mathcal{A}(V^r)$, $x_1 \wedge \cdots \wedge x_r$ corresponds to $A_r(x_1 \otimes \cdots \otimes x_r)$ where A_r is the alternation in V^r . The inner product in V^r gives rise to the following definition of inner product in $\Lambda^r(V)$:

$$\begin{array}{l} (x_1 \wedge \dots \wedge x_r \quad y_1 \wedge \dots \wedge y_r) \\ = (1/r!)(A_r(x_1 \otimes \dots \otimes x_r) \quad A_r(y_1 \otimes \dots \otimes y_r)) \\ = (1/r!) (\sum_{\sigma} (\operatorname{sgn} \sigma) x_{\sigma(1)} \otimes \dots \otimes x_{\sigma(r)} \quad \sum_{\tau} (\operatorname{sgn} \tau) y_{\tau(1)} \otimes \dots \otimes y_{\tau(r)}) \\ = (1/r!) \sum_{\sigma} (\operatorname{sgn} \sigma) \sum_{\tau} (\operatorname{sgn} \tau) (x_{\sigma(1)} \quad y_{\tau(1)}) \cdots (x_{\sigma(r)} \quad y_{\tau(r)}) \\ = (1/r!) \sum_{\sigma} (\operatorname{sgn} \sigma) \left| \begin{array}{c} (x_{\sigma(1)} \quad y_1) \cdots (x_{\sigma(1)} \quad y_r) \\ \dots \dots \dots \dots \\ (x_{\sigma(r)} \quad y_1) \cdots (x_{\sigma(r)} \quad y_r) \end{array} \right| \\ = \left| \begin{array}{c} (x_1 \quad y_1) \cdots (x_1 \quad y_r) \\ \dots \dots \dots \\ (x_r \quad y_1) \cdots (x_r \quad y_r) \end{array} \right| = \left| (x_i \quad y_k) \right|, \\ \dots \dots \dots \dots \\ (x_r \quad y_1) \cdots (x_r \quad y_r) \end{array} \right|$$
where $x_1 \wedge \dots \wedge x_r, \ y_1 \wedge \dots \wedge y_r \quad \varepsilon \Lambda^r(V).$

On the other hand,

$$\begin{array}{l} \langle x_1 \wedge \cdots \wedge x_r & (\Lambda^r u)(y_1 \wedge \cdots \wedge y_r) \rangle \\ = \langle x_1 \wedge \cdots \wedge x_r & u(y_1) \wedge \cdots \wedge u(y_r) \rangle \\ = |\langle x_i \ u(y_k) \rangle| = |\langle x_i \ y_k)|. \end{array}$$

Therefore,

$$\begin{array}{l} \langle x_1 \wedge \cdots \wedge x_r \quad (\Lambda^r u)(y_1 \wedge \cdots \wedge y_r) \rangle \\ = (x_1 \wedge \cdots \wedge x_r \quad y_1 \wedge \cdots \wedge y_r). \end{array}$$

The general relation follows from the bilinearity of $\langle x y \rangle$ and the linearity of $\Lambda^r u$.

2. It is of interest to take care of the relation between the above things and classical treatment of tensor analysis.

Let (e_1, e_2, \dots, e_n) and $(e'^1, e'^2, \dots, e'^n)$ be dual bases in V and V^* . It is obvious that $e_{i_1} \otimes \dots \otimes e_{i_r}$ and $e_{i_1} \wedge \dots \wedge e_{i_r}$ $(i_1 < i_2 < \dots < i_r)$ are respectively the basis in V^r and $\Lambda^r(V)$. If $y = \eta^j e_j$, $u(y) = \eta_i e'^i$ (summation convention is used), then $\eta_i = g_{i_j} \eta^j$, where $g_{i_j} = (e_i \ e_j)$. Consequently, if $y = t^{j_1 j_2 \dots j_r} e_{j_1} \otimes \dots \otimes e_{j_r} \in V^r$ and $u(y) = t_{i_1 i_2 \dots i_r} e'^{i_1} \otimes \dots \otimes e'^{i_r} \in V_r$, then

 $t_{i_{1}i_{2}\cdots i_{r}} = g_{i_{1}j_{1}}g_{i_{2}j_{2}}\cdots g_{i_{r}j_{r}}t^{j_{1}j_{2}\cdots j_{r}}.$ Moreover, if $y = \sum_{j_{1} < \cdots < j_{r}} t^{(j_{1}j_{2}\cdots j_{r})}e_{j_{1}} \wedge \cdots \wedge e_{j_{r}} \varepsilon \Lambda^{r}(V)$ and u(y) $= \sum_{i_{1} < \cdots < i_{r}} t_{(i_{1}i_{2}\cdots i_{r})}e^{(i_{1}} \wedge \cdots \wedge e^{(i_{r}} \varepsilon \Lambda^{r}(V^{*}), \text{ then}$ $t_{(i_{1}i_{2}\cdots i_{r})} = \sum_{j_{1} < j_{2} < \cdots < j_{r}} \begin{vmatrix} g_{i_{1}j_{1}} \cdots g_{i_{1}j_{r}} \\ \cdot & \cdot \\ g_{i_{1}j_{1}} \cdots g_{i_{r}j_{r}} \end{vmatrix} t^{(j_{1}j_{2}\cdots j_{r})},$

204

and these are respectively the covariant and contravariant components of tensors obtained by identifying the corresponding elements under the conjugate isomorphism $V^r \approx V_r$ or $\Lambda^r(V) \approx \Lambda^r(V^*)$.

Assume that V is a euclidean vector space, then $(e_1 \wedge \cdots \wedge e_n e_1 \wedge$ $\cdots \wedge e_n = |g_{ij}| = g$, where $g_{ij} = (e_i \ e_j)$. The unit elements $e = (1/\sqrt{g})e_1 \wedge e_j$ $\cdots \wedge e_n$ and $e' = \sqrt{g} e'^1 \wedge \cdots \wedge e'^n$ form respectively the basis of one dimensional vector spaces $\Lambda^n(V)$ and $\Lambda^n(V^*)$. Under the isomorphisms $\Lambda^n(V) \to \mathcal{A}(V^n)$ and $\Lambda^n(V^*) \to \mathcal{A}(V_n)$, e and e' respectively corresponds

$$\gamma^{i_1i_2\cdots i_n}e_{i_1}\otimes\cdots\otimes e_{i_n},\quad \gamma^{i_1i_2\cdots i_n}=(1/\sqrt{g})\in^{i_1i_2\cdots i_n},$$

and $\eta_{i_1i_2\cdots i_n}e^{i_1}\otimes\cdots\otimes e^{i_n}$, $\eta_{i_1i_2\cdots i_n}=\sqrt{g} \in_{i_1i_2\cdots i_n}$, where $\epsilon^{i_1i_2\cdots i_n}=\epsilon_{i_1i_2\cdots i_n}=\begin{cases} 1 & \text{if } (i_1,\cdots,i_n) \text{ is an even permutation,} \\ -1 & \text{if } (i_1,\cdots,i_n) \text{ is an odd permutation.} \end{cases}$

It is known that the linear map $\varphi: \Lambda^r(V) \to \Lambda^{n-r}(V^*)$ defined by $\varphi(x) = x \, \square e', \quad x \in \Lambda^r(V)$

$$\langle z \ x \sqcup e' \rangle = \langle z \wedge x \ e' \rangle, \quad z \in \Lambda^{n-r}(V)$$

is an isomorphism onto.

We should like to note that if

$$\begin{array}{ll} x = \sum_{i_1 < i_2 < \cdots < i_r} t^{i_1 i_2 \cdots i_r} e_{i_1} \wedge \cdots \wedge e_{i_r}, \\ \text{then} & x \, _\, e' = \sum_{j_1 < j_2 < \cdots < j_{n-r}} t_{j_1 j_2 \ldots j_{n-r}} e^{j_1} \wedge \cdots \wedge e^{j_{n-r}}, \\ \text{where} & t_{j_1 j_2 \ldots j_{n-r}} = (1/r!) \sum_{(i)} t^{i_1 i_2 \cdots i_r} \eta_{j_1 j_2 \ldots j_{n-r} i_1 i_2 \cdots i_r}. \end{array}$$

ther

and

So $x _ e'$ corresponds to an alternate tensor $t_{j_1 j_2 ... j_{n-r}}$ which is essentially the adjoint tensor [4] of the alternate tensor $t^{i_1i_2\cdots i_r}$ corresponding to x.

It is also obvious that if (e_1, e_2, \dots, e_n) is a set of orthonormal basis in V, then $e_{i_1} \otimes \cdots \otimes e_{i_r}$ and $e_{i_1} \wedge \cdots \wedge e_{i_r}$ $(i_1 < i_2 < \cdots < i_r)$ are respectively the orthonormal basis of V^r and $\Lambda^r(V)$.

A decomposable element (or multilinear vector) $x_1 \wedge \cdots \wedge x_r$ in $A^{r}(V)$ determines an r-simplex $(P_{0}, P_{1}, \dots, P_{r})$ when $x_{i} = P_{0}\hat{P}_{i}$ in euclidean *n*-space. Then the volume of this *r*-simplex is 1/r! of the length of $x_1 \wedge \cdots \wedge x_r$ in the sense of metric induced by the inner product in $\Lambda^{r}(V)$ mentioned above. Because

$$(x_1\wedge\cdots\wedge x_r \ x_1\wedge\cdots\wedge x_r)=ert (x_i \ x_k)ert \ = \sum t^{(i_1i_2\cdots i_r)}\overline{t^{(i_1i_2\cdots i_r)}}=\sum \{t^{(i_1i_2\cdots i_r)}\}^2,$$

provided $x_1 \wedge \cdots \wedge x_r = t^{(i_1 i_2 \cdots i_r)} e_{i_1} \wedge \cdots \wedge e_{i_r}$ is referred to the orthonormal basis.

3. Before discussing on conjugate isomorphism in the case of $P^{r}(V)$, we do some preparation on the properties of $P^{r}(V)$. This can be done completely parallel to the case of $\Lambda^r(V)$ [1, 2].

Denote by M^r the kernel of symmetric linear map $V^r \rightarrow V^r$ and put $P^r(V) = V^r/M^r$. If $\varphi: V^r \to P^r(V)$ is the natural projection, sending C.-J. Hsu

an element of V^r to its coset mod M^r , we shall use the notation: $\varphi(x_1 \otimes \cdots \otimes x_r) = x_1 \cdots x_r.$

It can be easily shown that a linear map $f: V^r \to Z$, where Z is a vector space, is symmetric if and only if $f(M^r)=0$. As a corollary of this theorem, it follows that the space $\mathcal{S}(V^r; Z)$ of all symmetric linear maps $f: V^r \to Z$ is isomorphic with the space $\mathcal{L}(P^r(V); Z)$ of all linear maps $g: P^r(V) \rightarrow Z$, the correspondence being established by the relation $f = g\varphi$. Therefore, if $k : \mathcal{L}(P^r(V); F) \to \mathcal{S}(V^r; F)$ is the isomorphism, then for $\theta = k^{-1}(\theta)\varphi \in \mathcal{S}(V^r; F)$ we have: θ

$$(x_1 \otimes \cdots \otimes x_r) = \langle x_1 \cdots x_r \ k^{-1}(\theta) \rangle.$$

Let M_r be the kernel of symmetric map $S_r: V_r \to V_r$, and $P^r(V^*)$ $=V_r/M_r$, then the range of S_r is the space of symmetric covariant r-tensors $\mathcal{S}(V_r)$, and S_r induces an isomorphism \overline{k} of the space $P^r(V^*)$ onto $\mathcal{S}(V_r)$ such that $\overline{k}\varphi = S_r$. Therefore

$$S_r(x_1' \otimes \cdots \otimes x_r') = \overline{k}(x_1' \cdots x_r').$$

For any $\theta \in \mathcal{S}(V^r; F)$, there exists an element $z'(\theta) \in V_r[\approx (V^r)^*]$ such that

 $\langle x_1 \otimes \cdots \otimes x_r \ z'(\theta) \rangle = \theta(x_1 \otimes \cdots \otimes x_r)$

for $x_1 \otimes \cdots \otimes x_r \in V^r$. It is easily shown that $z'(\theta)$ is symmetric element in V_r and that the map $z': \theta \to z'(\theta)$ is an isomorphism from $\mathcal{S}(V^r; F)$ onto $\mathcal{S}(V_r)$.

From the above discussion we have the following diagram:

$$(P^{r}(V))^{*} = \mathcal{L}(P^{r}(V); F) \underset{\stackrel{k}{\approx}}{\approx} (V^{r}; F) \underset{\stackrel{k}{\approx}}{\approx} (V_{r}) \underset{\stackrel{k}{\approx}}{\approx} P^{r}(V^{*}).$$

Thus we have

$$P^r(V^*) \approx (P^r(V))^*.$$

Let $i = k^{-1} z'^{-1} \overline{k}$ be the composed isomorphism: $P'(V^*) \to (P'(V))^*$. If we put $\theta = z'^{-1} \overline{k}(x'_1 \cdots x'_r)$ where $x'_1 \cdots x'_r \in P^r(V^*)$, we have $z'(\theta)$ $= \overline{k}(x_1' \cdots x_r') = S_r(x_1' \otimes \cdots \otimes x_r')$. Consequently

$$\begin{array}{l} \langle x_1 \cdots x_r \quad k^{-1} z'^{-1} \overline{k} (x'_1 \cdots x'_r) \rangle \\ = \langle x_1 \cdots x_r \quad k^{-1} (\theta) \rangle \\ = \theta (x_1 \otimes \cdots \otimes x_r) \\ = \langle x_1 \otimes \cdots \otimes x_r \quad z' (\theta) \rangle \\ = \langle x_1 \otimes \cdots \otimes x_r \quad S_r (x'_1 \otimes \cdots \otimes x'_r) \rangle \\ = \langle x_1 \otimes \cdots \otimes x_r \quad \sum_{\sigma} x'_{\sigma(1)} \otimes \cdots \otimes x'_{\sigma(r)} \rangle \\ = \sum \langle x_1 \quad x'_{\sigma(1)} \rangle \langle x_2 \quad x'_{\sigma(2)} \rangle \cdots \langle x_r \quad x'_{\sigma(r)} \rangle. \end{array}$$

Thus, if we identify the corresponding elements under the isomorphism $i=k^{-1}z'^{-1}\overline{k}$, then we have

$$\langle x_1 \cdot x_2 \cdots x_r \quad x'_1 \cdot x'_2 \cdots x'_r
angle \ = \sum_{\sigma} \langle x_1 \; x'_{\sigma(1)}
angle \langle x_2 \; x'_{\sigma(2)}
angle \cdots \langle x_r \; x'_{\sigma(r)}
angle.$$

Next, let $u: V \to V^*$ be the conjugate isomorphism, and $u^r: V^r \to V_r$

be the r-th power of u. If $\eta: V_r \to P^r(V^*)$ be the natural projection, then $\eta u^r: V^r \to P^r(V^*)$ is a symmetric linear map. Then there exists a linear map $P^r u: P^r(V) \to P^r(V^*)$ such that $(P^r u) \circ \varphi = \eta \circ u^r$, and $(P^r u)(x_1 \cdots x_r) = u(x_1) \cdots u(x_r).$

Theorem 2. $P^r u$ is the conjugate isomorphism between $P^r(V)$ and $P^r(V^*)$ [identified with $(P^r(V))^*$].

Proof. Under the isomorphism between $P^r(V)$ and $\mathcal{S}(V^r)$, $x_1 \cdots x_r$ corresponds to $S_r(x_1 \otimes \cdots \otimes x_r)$. And the inner product in V^r gives rise to the following definition of inner product in $P^r(V)$.

$$\begin{array}{l} (x_1\cdots x_r \quad y_1\cdots y_r) \\ = (1/r!)(S_r(x_1\otimes\cdots\otimes x_r) \quad S_r(y_1\otimes\cdots\otimes y_r)) \\ = (1/r!)\left(\sum_{\sigma} x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(r)}\sum_{\tau} y_{\tau(1)}\otimes\cdots\otimes y_{\tau(r)}\right) \\ = (1/r!)\sum_{\sigma}\sum_{\tau} (x_{\sigma(1)} \ y_{\tau(1)})\cdots(x_{\sigma(r)} \ y_{\tau(r)}) \\ = \sum_{\tau} (x_1 \ y_{\tau(1)})\cdots(x_r \ y_{\tau(r)}). \end{array}$$

On the other hand, we have

$$\begin{array}{l} \langle x_1 \cdots x_r \quad (P^r u)(y_1 \cdots y_r) \rangle \\ = \langle x_1 \cdots x_r \quad u(y_1) \cdots u(y_r) \rangle \\ = \sum_{\tau} \langle x_1 \quad u(y_{\tau(1)}) \rangle \cdots \langle x_r \quad u(y_{\tau(r)}) \rangle \\ = \sum_{\tau} (x_1 \quad y_{\tau(1)}) \cdots (x_r \quad y_{\tau(r)}). \end{array}$$

Therefore,

$$egin{aligned} &(x_1\cdots x_r \quad y_1\cdots y_r)\ =&\langle x_1\cdots x_r \quad (P^ru)(y_1\cdots y_r)
angle. \end{aligned}$$

The general relation follows from the bilinearity of $\langle x y \rangle$ and the linearity of $P^r u$.

From the above discussion it is also easily seen that the following relations can be respectively used as the definition of inner product in V^r , $\Lambda^r(V)$ and $P^r(V)$:

$$\begin{array}{ll} (x \ y) = \langle x \ u^r(y) \rangle \ ; & x, y \in V^r, \\ (x \ y) = \langle x \ (\Lambda^r u) y \rangle; & x, y \in \Lambda^r(V), \\ (x \ y) = \langle x \ (P^r u) y \rangle; & x, y \in P^r(V). \end{array}$$

4. It is well known that the Grassmann algebra

 $\Lambda(V) = \Lambda^{0}(V) + \Lambda^{1}(V) + \dots + \Lambda^{n}(V) \quad \text{(direct sum)}$

is a vector space of dimension 2^n and that $\Lambda(V)^* \approx \Lambda(V^*)$, where V^* is the dual space of V. Moreover, if we identify the corresponding elements under this isomorphism, the pairing of these two spaces satisfies the following [1]:

$$\langle x \ x'
angle = \left\langle \sum_{p=0}^{n} x_p \ \sum_{p=0}^{n} x'_p \right\rangle = \sum_{p=0}^{n} \left\langle x_p \ x'_p \right\rangle,$$

where $x = \sum_{p=0}^{n} x_p \in \Lambda(V)$, $x' = \sum_{p=0}^{n} x'_p \in \Lambda(V^*)$ with $x_p \in \Lambda^p(V)$ and $x'_p \in \Lambda^p(V^*)$.

C.-J. Hsu

[Vol. 35,

Let u be the conjugate isomorphism from V onto V^* . Denote \overline{u} the canonic prolongment [1] of u in $\Lambda(V)$, then for $y = \sum_{p=0}^{n} y_p \in \Lambda(V)$, we have

$$\overline{u}(y) = \sum_{p=0}^{n} (\Lambda^{p} u) y_{p},$$

where $\Lambda^{p}u$ is the *p*-th exterior power of *u*.

Now we define (x, y) in $\Lambda(V)$ by the following:

$$(x, y) = \langle x, \overline{u}(y) \rangle.$$

Then, we can prove easily that (x, y) is an inner product as follows: By definition, we have

$$(x, y) = \left(\sum_{p=0}^{n} x_{p} \sum_{p=0}^{n} y_{p}\right) = \left\langle\sum_{p=0}^{n} x_{p} \sum_{p=0}^{n} (\Lambda^{p} u) y_{p}\right\rangle$$
$$= \sum_{p=0}^{n} \left\langle x_{p} (\Lambda^{p} u) y_{p}\right\rangle = \sum_{p=0}^{n} (x_{p} y_{p}),$$

where $(x_p \ y_p)$ is the inner product defined above (§1).

Consequently, we have

- 1) $\overline{(x \ y)} = \sum_{p=0}^{n} \overline{(x_p \ y_p)} = \sum_{p=0}^{n} (y_p \ x_p) = (y \ x).$
- 2) Evidently $(\alpha x + \beta y, z) = \alpha(x \ z) + \beta(y \ z); \ \alpha, \ \beta \in F, \ x, \ y, \ z \in \Lambda(V).$
- 3) $(x \ x) = \sum_{p=0}^{n} (x_p \ x_p)$ is real and is ≥ 0 . Moreover, as $(x_p \ x_p) = 0$ if and only if $x_p = 0$, so $(x \ x) = 0$ if and only if x = 0.

Thus we have the following:

Theorem 3. With inner product $(x \ y)$ defined above, $\Lambda(V)$ is a unitary space, and the conjugate isomorphism between $\Lambda(V)$ and $\Lambda(V^*)$ is given by the canonic prolongment \overline{u} of u.

References

- N. Bourbaki: Algèbre, Chapitre III, Algèbre Multilinéaire, Hermann et Cie, Paris (1948).
- [2] S. S. Chern: Differentiable manifold, Chicago lecture notes (1953).
- [3] P. R. Halmos: Finite Dimensional Vector Spaces, Princeton University Press (1948).
- [4] A. Lichnerowicz: Éléments de Calcul tensoriel, Colin, Paris (1950).