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Some Remarks on Inner Product in Product Space
of Unitary Spaces

By Chen-Jung Hsu*)

Tohoku University, and National Taiwan University, Formosa
(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

1. Let V be a unitary space over reals or complex numbers, and
(x, y) be the inner product defined in it. It is known that inner product
can be defined in the tensor product V-V(R)...(R)V (r factors in
number) which satisfies: 2, 3 **)

(Xl (X2()’ "X,r, y(R)y.(R)" "(R)yr)--(x, y)(x., y.)...(x, y).
This function, when restricted to the subspace of alternate ele-

ments /(V) and the subspace of symmetric elements (V) of V,
gives rise respectively to inner product of the space of exterior r-
vectors /r(V) and P(V) (to be defined below), since these spaces are
respectively isomorphic to (V) and (Vr).

If U is the conjugate isomorphism between V and its dual (con-
jugate) space V*, then

(x, u(y)-(x, y) for all x e V,
where (x, y* is the pairing of V and V* to scalars.

Denote by ur’V-->V- V*(R)...(R)V* (r factors in number) the
r-th tensor power of u, then u is an isomorphism between V and V
and

u’(x (R)... (R) x) u(x) (R)... (R) u(x).
Moreover, if Au A(V)-->Ar(V*) is the r-th exterior power of u,

then Aru is an isomorphism between A(V) and A(V*) and
(Au)(x,/ /x)-u(x,)/ /u(x).

As it is known that (V)*zV and ((V))*zA(V*), we can
identify the isomorphic spaces.

Now, we propose to show"
Theorem 1. u is the conjugate isomorphism between V and

Vr-(V)*, and Au is the conjugate isomorphism between At(V) and
A(V*)--(A(V))*.

Proof. For any x(R)...(R)x and y(R)...(R)y in Vr, we have
(x(... (R)Xr U’(Yl(’’" (

---(X(’’’)X. u(Yl)(’’’(U(Yr)}
(X U(Yl)}""" ;X

*) I wish to express my cordial thanks to Prof. S. Sasaki for his kind guidance
and encouragement.

**) In the sequel we follow the notation of S. S. Chern [2]. The number in
bracket denotes the references at the end of this paper.
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=(x y)...(x y)
=(x(R)...(R)x y(R)...(R)y).

The general relation (x u(y)}--(x y) follows from the bilinearity of
(x y} and linearity of uL

Next, under the isomorphism between A(V) and
corresponds to A(x...x) where A is the alternation in Vr. The
inner product in V gives rise to the following definition of inner
product in Ar(V):

(xA. Ax yA. AYr)
=(1/rl)(A(x...x) A(y...y))

(l/r!) ( (sgn a)x(1).. "Xa(r (sgn r)Y:(1)’’
=(i/r) E (sgn ) E (sgn )(x.() y()).. "(Xr)

=(i/r) (sgn ,) (x.() Yl)’" .(x.(,) y)

(x )...(x ) -I(x ) I,

The general relation ollows from the bilinearity of (x y} and the
linearity of Au.

2. It is of interest to take care of the relation between the above
things and classical treatment o tensor analysis.

Let (e, e,.., en) and (e’, e’, ..., e’) be dual bases in V and V*.
It is obvious that e, ... e,. and eA... Aer- (i<i<.... <ir) are

Je ti (sum-respectively the basis in V and A(V). If y , u(y) e
mation convention is used),, then --g, where g-(e e). Conse-
quently, if y-t’’"e,. e V and u(y)-t,...e’ e’r V,
then

t,. "r-- g,,gM" "Y’irJr
Moreover, if y t(’"r)e, A A e Ar( V) and u(y)

J’"
e"’ A Ae’r A(V*), then

i,.,i

gi" gr
t(ii...ir) t(AA’"r

gilA" giver
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and these are respectively the covariant and contravariant components
of tensors obtained by identifying the corresponding elements under
the conjugate isomorphism V z V or //(V)A(V*).

Assume that V is a euclidean vector space, then (eA...
..Ae)--]gl--g, where g--(e e). The unit elements e--(1//)eA
Ae and e’--e’A A e’ form respectively the basis of one

dimensional vector spaces An(V) and An(V*). Under the isomorphisms
A(V) (V) and A(V*) (V), e and e’ respectively corresponds

e’,...e", , -...,and ..
where e,,’" e,...-- 1 if (i, i) is an even permutation,

--1 if (i,..., i) is an odd permutation.
It is known that the linear map " A(V)An-(V*) defined by

e’, x
and (z xAe’}--(zAx e’}, zA-r(V)
is an isomorphism onto.

We should like to note that if
x #’’"%A...Aer,

then x e’ t,.. e’, A. Aen-r,
where t,..._. (1/r ) t,"’,..._....

()

So x Ae’ corresponds to an alternate tensor t..._ which is
essentially the adjoint tensor 4J of the alternate tensor t’’’’ cor-
responding to x.

It is also obvious that if (e, e,..., e) is a set of orthonormal
basis in V, then e...e and %A...A% (i<ie<...<ir) are
respectively the orthonormal basis of V and A(V).

A decomposable element (or multilinear vector) xA...Ax in

A(V) determines an r-simplex (Po, P,.,.,P)when x-PoP in
euclidean n-space. Then the volume of this r-simplex is 1/r of the
length of xA...Ax in the sense of metric induced by the inner
product in A(V) mentioned above. Because

provided xA Xr--$’’’’ire,) A... Ae is referred to the orthonormal
basis.

3. Before discussing on conjugate isomorphism in the case of
P(V), we do some preparation on the properties of P(V). This can
be done completely parallel to the case of A(V) 1, 2.

Denote by M the kernel of symmetric linear map VrV and
put P(V)-V/M. If "VP(V) is the natural projection, sending
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an element of V to its coset mod M, we shall use the notation:
(x(R). .(R)x)-x, .x.

It can be easily shown that a linear map f: Vr---> Z, where Z is
a vector space, is symmetric if and only if f(M)-O. As a corollary
of this theorem, i.t follows that the space (V; Z) o all symmetric
linear maps f’V---> Z is isomorphic with the space _L(P(V); Z) of
all linear maps g" P(V)Z, the correspondence being established
by the relation f=g. Therefore, if k" (P(V); F) 3(V; F) is
the isomorphism, then for O--k-(0) (Vr; F) we have:

(x...x)-(x...x -()}.
Let M be the kernel of symmetric map S’VV, and pr(V*)

VJM, then the range of Sr is the space of symmetric covariant

r-tensors (V), and S induces an isomorphism k of the space P(V*)
onto 3(V) such that k-S. Therefore

(x... x)-(x...
For any O3(Vr;F), there exists an element z’(O)V[z(V)*

such that
(X " "X Zf()} :(X " "Xr)

for x...x Vr. It is easily shown that z’(O) is symmetric element
in V and that the map z" 0z’(0) is an isomorphism from 3(V; F)
onto 3(V).

From the above discussion we have the following diagram:
(P(V))*--(P(V); F)(V; F)(V)P(V*).

Thus we have
pr(V*)=(pr(V))*.

Let i-k-z’-k be the composed isomorphism: P(V*)(P(V))*.
If we put O-z’-k(x...x) where x...x P(V*), we have z’(0)

k(x.., x)-S(x... x). Consequently

(x...x -z’-k(x...x;)}
;. .x -()}

=(x...x)
=(x...x z’()}
=(x.. "Xr Z(X’’ "X)}

a(2)"
Thus, if we identify the corresponding elements under the isomorphism
i- k-z’-k, then we have

a(2)}
Next, let u" V V* be the conjugate isomorphism, and u V V
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be the r-th power of u. If ]’V--> P(V*) be the natural projection,
then ]u V->P(V*) is a symmetric linear map. Then there exists
a linear map Pu" P(V)--->P(V*) such that (Pu)o--iou, and

(pru)(x" r)--U(X) U(Xr).
Now we have the following:
Theorem 2. pru is the conjugate isomorphism between pr(V)

and P(V*) [identified with (P (V))*.
Proof. Under the isomorphism between P(V) and 3(V), x...x

corresponds to S(x(R)...(R)Xr). And the inner product in V gives
rise to the following definition of inner product in P(V).

(X Xr Y Y)
=(/r!)(S(x (R). .(R)x) S(y (R). .(R)y))
=(/r!)( x)(R)... (R)x) y,)(R)... (R)y,)

=(/r!) : , (x, y(,))... (x(,_
(X y()) (X

On the other hand, we have
(xl’"xr (Pru)(yI...y)}

--;x...x u(y)...u(y)}
(Xl u(Yv(1))}""" (Xr u(Yv(r))}

Therefore,
(x...x y...y)
Xl’" "Xr (pru)(Y

The general relation follows from the bilinearity of (x y} and the
linearity of Pu.

From the above discussion it is also easily seen that the following
relations can be respectively used as the definition of inner product in
Yr, ./l.r(V) and P( V):

(x y)-( u(y)} x, y v,
(x y)--(x (pru)y}; x, y e Pr(Y).

4. It is well known that the Grassmann algebra
/(V)-- A(V)-kA(V)+... q-A(V) (direct sum)

is a vector space of dimension 2 and that A(V)*A(V*), where V*
is the dual space of V. Moreover, if we identify the corresponding ele-
ments under this isomorphism, the pairing of these two spaces satisfies
the following [1_"

p=O

(V*) with x A(V) andwhere x-- x /(V), x’--, x, x, e A(V*).
p=0



208 C.-J. Hsu Vol. 35,

Let u be the conjugate isomorphism from V onto V*. Denote
the canonic prolongment [lJ of u in A(V), then for y-- y A(V),

p-0

we have

u(u)- : (/t,u)u,
io=0

where A’u is the p-th exterior power of u.
Now we define (x, y) in A(V) by the following:

(, y)= (x, (y)}.
Then, we can prove easily that (x, y) is an inner product as follows:

By definition, we have

(x, y)-- x y x (A’u)y

; (u)u)- ( ),
where (x y) is the inner product defined above ( 1).

Consequently, we have

) (x y)- (x y)-E (u x)-(u x).
p=0 p=0

2) Evidently (ax+ fly, z)=a(x z)+ (y z); a, F, x, y, z A(V).

8) (x x)-- (x x) is real and is 0. Moreover, as (x x)-0
if and only if xv=O, so (x x)=0 if and only if x=0.

Thus we have the following:
Theorem 8. With inner product (x y) d@ned above, A(V) is a

unitary space, and the conjugate isomorphism between A( V) and A( V*)
is given by the canonic prolongment of u.
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