46. Some Remarks on Inner Product in Product Space of Unitary Spaces

By Chen-Jung Hsu*)
Tohoku University, and National Taiwan University, Formosa
(Comm. by K. Kunugi, m.J.A., May 7, 1959)

1. Let V be a unitary space over reals or complex numbers, and (x, y) be the inner product defined in it. It is known that inner product can be defined in the tensor product $V^{r}=V \otimes \cdots \otimes V$ (r factors in number) which satisfies: [2,3]**)

$$
\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{r}, y_{1} \otimes y_{2} \otimes \cdots \otimes y_{r}\right)=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \cdots\left(x_{r}, y_{r}\right)
$$

This function, when restricted to the subspace of alternate elements $\mathcal{A}\left(V^{r}\right)$ and the subspace of symmetric elements $\mathcal{S}\left(V^{r}\right)$ of V^{r}, gives rise respectively to inner product of the space of exterior r vectors $\Lambda^{r}(V)$ and $P^{r}(V)$ (to be defined below), since these spaces are respectively isomorphic to $\mathcal{A}\left(V^{r}\right)$ and $\mathcal{S}\left(V^{r}\right)$.

If u is the conjugate isomorphism between V and its dual (conjugate) space V^{*}, then

$$
\langle x, u(y)\rangle=(x, y) \quad \text { for all } x \in V,
$$

where $\left\langle x, y^{*}\right\rangle$ is the pairing of V and V^{*} to scalars.
Denote by $u^{r}: V^{r} \rightarrow V_{r}=V^{*} \otimes \cdots \otimes V^{*}$ (r factors in number) the r-th tensor power of u, then u^{r} is an isomorphism between V^{r} and V_{r} and

$$
u^{r}\left(x_{1} \otimes \cdots \otimes x_{r}\right)=u\left(x_{1}\right) \otimes \cdots \otimes u\left(x_{r}\right) .
$$

Moreover, if $\Lambda^{r} u: \Lambda^{r}(V) \rightarrow \Lambda^{r}\left(V^{*}\right)$ is the r-th exterior power of u, then $\Lambda^{r} u$ is an isomorphism between $\Lambda^{r}(V)$ and $\Lambda^{r}\left(V^{*}\right)$ and

$$
\left(\Lambda^{r} u\right)\left(x_{1} \wedge \cdots \wedge x_{r}\right)=u\left(x_{1}\right) \wedge \cdots \wedge u\left(x_{r}\right) .
$$

As it is known that $\left(V^{r}\right)^{*} \approx V_{r}$ and $\left(\Lambda^{r}(V)\right)^{*} \approx \Lambda^{r}\left(V^{*}\right)$, we can identify the isomorphic spaces.

Now, we propose to show:
Theorem 1. u^{r} is the conjugate isomorphism between V^{r} and $V_{r}=\left(V^{r}\right)^{*}$, and $\Lambda^{r} u$ is the conjugate isomorphism between $\Lambda^{r}(V)$ and $\Lambda^{r}\left(V^{*}\right)=\left(\Lambda^{r}(V)\right)^{*}$.

Proof. For any $x_{1} \otimes \cdots \otimes x_{r}$ and $y_{1} \otimes \cdots \otimes y_{r}$ in V^{r}, we have

$$
\begin{aligned}
& \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad u^{r}\left(y_{1} \otimes \cdots \otimes y_{r}\right)\right\rangle \\
= & \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad u\left(y_{1}\right) \otimes \cdots \otimes u\left(y_{r}\right)\right\rangle \\
= & \left\langle x_{1} u\left(y_{1}\right)\right\rangle \cdots\left\langle x_{r} \quad u\left(y_{r}\right)\right\rangle
\end{aligned}
$$

[^0]\[

\left.$$
\begin{array}{l}
=\left(\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right) \cdots\left(x_{r} y_{r}\right.
\end{array}
$$\right) .
\]

The general relation $\langle x u(y)\rangle=\left(\begin{array}{ll}x & y\end{array}\right)$ follows from the bilinearity of $\langle x y\rangle$ and linearity of u^{r}.

Next, under the isomorphism between $A^{r}(V)$ and $\mathcal{A}\left(V^{r}\right), x_{1} \wedge \cdots \wedge x_{r}$ corresponds to $A_{r}\left(x_{1} \otimes \cdots \otimes x_{r}\right)$ where A_{r} is the alternation in V^{r}. The inner product in V^{r} gives rise to the following definition of inner product in $A^{r}(V)$:

$$
\begin{aligned}
& \left(x_{1} \wedge \cdots \wedge x_{r} \quad y_{1} \wedge \cdots \wedge y_{r}\right) \\
& =(1 / r!)\left(A_{r}\left(x_{1} \otimes \cdots \otimes x_{r}\right) \quad A_{r}\left(y_{1} \otimes \cdots \otimes y_{r}\right)\right) \\
& =(1 / r!)\left(\sum_{\sigma}(\operatorname{sgn} \sigma) x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(r)} \quad \sum_{\tau}(\operatorname{sgn} \tau) y_{\tau(1)} \otimes \cdots \otimes y_{\tau(r)}\right) \\
& =(1 / r!) \sum_{\sigma}(\operatorname{sgn} \sigma) \sum_{\tau}(\operatorname{sgn} \tau)\left(x_{\sigma(1)} y_{\tau(1)}\right) \cdots\left(x_{\sigma(r)} y_{\tau(r)}\right) \\
& =(1 / r!) \sum_{\sigma}(\operatorname{sgn} \sigma)\left|\begin{array}{cccc}
\left(x_{\sigma(1)}\right. & \left.y_{1}\right) \cdots\left(x_{\sigma(1)}\right. & \left.y_{r}\right) \\
\cdot & \cdot & \cdot & \cdot \\
\left(x_{\sigma(r)}\right. & \left.y_{1}\right) & \cdots\left(x_{\sigma(r)}\right. & \left.y_{r}\right)
\end{array}\right| \\
& \left.=\left\lvert\, \begin{array}{cccc}
\left(x_{1}\right. & \left.y_{1}\right) \cdots & \cdots & \left(x_{1}\right. \\
y_{r}
\end{array}\right.\right)\left|=\left|\begin{array}{ll}
x_{i} & \left.y_{k}\right) \mid, \\
\cdot & \cdot \\
\left(x_{r}\right) & \cdot \\
\left(x_{r}\right. & \left.y_{1}\right) \\
\cdots & \cdots \\
x_{r} & \left.y_{r}\right)
\end{array}\right|\right.
\end{aligned}
$$

where $x_{1} \wedge \cdots \wedge x_{r}, y_{1} \wedge \cdots \wedge y_{r} \varepsilon \Lambda^{r}(V)$.
On the other hand,

$$
\begin{aligned}
& \left\langle x_{1} \wedge \cdots \wedge x_{r} \quad\left(\Lambda^{r} u\right)\left(y_{1} \wedge \cdots \wedge y_{r}\right)\right\rangle \\
= & \left\langle x_{1} \wedge \cdots \wedge x_{r} \quad u\left(y_{1}\right) \wedge \cdots \wedge u\left(y_{r}\right)\right\rangle \\
= & \left|\left\langle x_{i} u\left(y_{k}\right)\right\rangle\right|=\left|\left(x_{i} y_{k}\right)\right| .
\end{aligned}
$$

Therefore,

$$
\left.\begin{array}{rl}
& \left\langle x_{1} \wedge \cdots \wedge x_{r}\right. \\
= & \left.\left(\Lambda^{r} u\right)\left(y_{1} \wedge \cdots \wedge y_{r}\right)\right\rangle \\
= & \left(x_{1} \wedge \cdots \wedge x_{r}\right.
\end{array} \quad y_{1} \wedge \cdots \wedge y_{r}\right) . .
$$

The general relation follows from the bilinearity of $\langle x y\rangle$ and the linearity of $\Lambda^{r} u$.
2. It is of interest to take care of the relation between the above things and classical treatment of tensor analysis.

Let ($e_{1}, e_{2}, \cdots, e_{n}$) and ($e^{\prime 1}, e^{\prime 2}, \cdots, e^{\prime n}$) be dual bases in V and V^{*}. It is obvious that $e_{i_{1}} \otimes \cdots \otimes e_{i_{r}}$ and $e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\left(i_{1}<i_{2}<\cdots<i_{r}\right)$ are respectively the basis in V^{r} and $\Lambda^{r}(V)$. If $y=\eta^{j} e_{j}, u(y)=\eta_{i} e^{\prime i}$ (summation convention is used), then $\eta_{i}=g_{i j} \eta^{j}$, where $g_{i j}=\left(e_{i} e_{j}\right)$. Consequently, if $y=t^{j_{1} j_{2} \cdots j_{r}} e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \varepsilon V^{r}$ and $u(y)=t_{i_{1} i_{2} \cdots i_{r}} e^{\prime i_{1}} \otimes \cdots \otimes e^{\prime i_{r}} \varepsilon V_{r}$, then
$t_{i_{1} i_{2} \cdots i_{r}}=g_{i_{1} j_{1}} g_{i_{2} j_{2}} \cdots g_{i_{r} j_{r}} t^{j_{1} j_{2} \cdots j_{r}}$.
Moreover, if $y=\sum_{j_{1}<\cdots<j_{r}} t^{\left(j_{1} j_{2} \cdots j_{r}\right)} e_{j_{1}} \wedge \cdots \wedge e_{j_{r}} \varepsilon \Lambda^{r}(V)$ and $u(y)$ $=\sum_{i_{1}<\cdots<i_{r}} t_{\left.i_{1} i_{2} \cdots i_{r}\right)} e^{i i_{1}} \wedge \cdots \wedge e^{i i_{r}} \varepsilon \Lambda^{r}\left(V^{*}\right)$, then

$$
t_{\left(i_{1} i_{2} \cdots i_{r}\right)}=\sum_{j_{1}<j_{2}<\cdots<j_{r}}\left|\begin{array}{c}
g_{i_{1} j_{1}} \cdots g_{i_{1} j_{r}} \\
\cdot \cdots \cdot \\
g_{i_{1} j_{1}} \cdots g_{i_{r} j_{r}}
\end{array}\right| t^{j_{\left.j_{1} j_{2} \cdots j_{r}\right)},}
$$

and these are respectively the covariant and contravariant components of tensors obtained by identifying the corresponding elements under the conjugate isomorphism $V^{r} \approx V_{r}$ or $\Lambda^{r}(V) \approx \Lambda^{r}\left(V^{*}\right)$.

Assume that V is a euclidean vector space, then ($e_{1} \wedge \cdots \wedge e_{n} e_{1} \wedge$ $\left.\cdots \wedge e_{n}\right)=\left|g_{i j}\right|=g$, where $g_{i j}=\left(e_{i} e_{j}\right)$. The unit elements $e=(1 / \sqrt{g}) e_{1} \wedge$ $\cdots \wedge e_{n}$ and $e^{\prime}=\sqrt{g} e^{\prime 1} \wedge \cdots \wedge e^{\prime n}$ form respectively the basis of one dimensional vector spaces $\Lambda^{n}(V)$ and $\Lambda^{n}\left(V^{*}\right)$. Under the isomorphisms $\Lambda^{n}(V) \rightarrow \mathcal{A}\left(V^{n}\right)$ and $\Lambda^{n}\left(V^{*}\right) \rightarrow \mathcal{A}\left(V_{n}\right), e$ and e^{\prime} respectively corresponds

$$
\eta^{i_{1} i_{2} \cdots i_{n}} e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}, \quad \eta^{i_{1} i_{2} \cdots i_{n}}=(1 / \sqrt{g}) \epsilon^{i_{1} i_{2} \cdots i_{n}}
$$

and $\eta_{i_{1} i_{2} \cdots i_{n}} e^{\prime i_{1}} \otimes \cdots \otimes e^{\prime i_{n}}, \quad \eta_{i_{1} i_{2} \cdots i_{n}}=\sqrt{g} \epsilon_{i_{1} i_{2} \cdots i_{n}}$,
where $\epsilon^{i_{1} i_{2} \cdots i_{n}}=\epsilon_{i_{1} i_{2} \cdots i_{n}}=\left\{\begin{aligned} 1 & \text { if }\left(i_{1}, \cdots, i_{n}\right) \text { is an even permutation, } \\ -1 & \text { if }\left(i_{1}, \cdots, i_{n}\right) \text { is an odd permutation. }\end{aligned}\right.$
It is known that the linear map $\varphi: \Lambda^{r}(V) \rightarrow \Lambda^{n-r}\left(V^{*}\right)$ defined by and

$$
\begin{aligned}
\varphi(x) & =x\lrcorner e^{\prime}, \quad x \varepsilon \Lambda^{r}(V) \\
\left.\langle z x\lrcorner e^{\prime}\right\rangle & =\left\langle z \wedge x \quad e^{\prime}\right\rangle, \quad z \varepsilon \Lambda^{n-r}(V)
\end{aligned}
$$

is an isomorphism onto.
We should like to note that if
then

$$
\begin{aligned}
& x=\sum_{i_{1}<i_{2}<\cdots<i_{r}} t^{i_{1} i_{2} \cdots i_{r}} e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}, \\
& x\lrcorner e^{\prime}=\sum_{j_{1}<j_{2}<\cdots<j_{n-r}} t_{j_{1} j_{2} \cdots j_{n-r}} e^{\prime j_{1}} \wedge \cdots \wedge e^{j_{n-r}}, \\
& t_{j_{1} j_{2} \cdots j_{n-r}}=(1 / r!) \sum_{(i)} t^{i_{1} i_{2} \cdots i_{r} r \eta_{j_{1}} j_{2} \cdots j_{n-r} i_{1} i_{2} \cdots i_{r}} .
\end{aligned}
$$

where
So $x _e^{\prime}$ corresponds to an alternate tensor $t_{j_{1} j_{2} \cdots j_{n-r}}$ which is essentially the adjoint tensor [4] of the alternate tensor $t^{i_{1} i_{2} \cdots i_{r}}$ corresponding to x.

It is also obvious that if ($e_{1}, e_{2}, \cdots, e_{n}$) is a set of orthonormal basis in V, then $e_{i_{1}} \otimes \cdots \otimes e_{i_{r}}$ and $e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\left(i_{1}<i_{2}<\cdots<i_{r}\right)$ are respectively the orthonormal basis of V^{r} and $\Lambda^{r}(V)$.

A decomposable element (or multilinear vector) $x_{1} \wedge \cdots \wedge x_{r}$ in $\Lambda^{r}(V)$ determines an r-simplex $\left(P_{0}, P_{1}, \cdots, P_{r}\right)$ when $x_{i}={\overrightarrow{P_{0} P}}_{i}$ in euclidean n-space. Then the volume of this r-simplex is $1 / r$! of the length of $x_{1} \wedge \cdots \wedge x_{r}$ in the sense of metric induced by the inner product in $\Lambda^{r}(V)$ mentioned above. Because

$$
\begin{aligned}
& \left(x_{1} \wedge \cdots \wedge x_{r} x_{1} \wedge \cdots \wedge x_{r}\right)=\left|\left(x_{i} x_{k}\right)\right| \\
= & \sum t^{\left(i_{1} i_{2} \cdots i_{r} r\right.} \overline{\left.t^{\left(t_{1} i_{2} \cdots i_{r}\right.} \dot{i}_{r}\right)}=\sum\left\{t^{\left(i_{1} i_{2} \cdots i_{r}\right)}\right\}^{2},
\end{aligned}
$$

provided $x_{1} \wedge \cdots \wedge x_{r}=t^{\left(i_{1} i_{2} \cdots i_{r}\right)} e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}$ is referred to the orthonormal basis.
3. Before discussing on conjugate isomorphism in the case of $P^{r}(V)$, we do some preparation on the properties of $P^{r}(V)$. This can be done completely parallel to the case of $\Lambda^{r}(V)[1,2]$.

Denote by M^{r} the kernel of symmetric linear map $V^{r} \rightarrow V^{r}$ and put $P^{r}(V)=V^{r} / M^{r}$. If $\varphi: V^{r} \rightarrow P^{r}(V)$ is the natural projection, sending
an element of V^{r} to its coset $\bmod M^{r}$, we shall use the notation:

$$
\varphi\left(x_{1} \otimes \cdots \otimes x_{r}\right)=x_{1} \cdots x_{r}
$$

It can be easily shown that a linear map $f: V^{r} \rightarrow Z$, where Z is a vector space, is symmetric if and only if $f\left(M^{r}\right)=0$. As a corollary of this theorem, it follows that the space $\mathcal{S}\left(V^{r} ; Z\right)$ of all symmetric linear maps $f: V^{r} \rightarrow Z$ is isomorphic with the space $\mathcal{L}\left(P^{r}(V) ; Z\right)$ of all linear maps $g: P^{r}(V) \rightarrow Z$, the correspondence being established by the relation $f=g \varphi$. Therefore, if $k: \mathcal{L}\left(P^{r}(V) ; F\right) \rightarrow \mathcal{S}\left(V^{r} ; F\right)$ is the isomorphism, then for $\theta=k^{-1}(\theta) \varphi \varepsilon \mathcal{S}\left(V^{r} ; F\right)$ we have:

$$
\theta\left(x_{1} \otimes \cdots \otimes x_{r}\right)=\left\langle x_{1} \cdots x_{r} k^{-1}(\theta)\right\rangle .
$$

Let M_{r} be the kernel of symmetric map $S_{r}: V_{r} \rightarrow V_{r}$, and $P^{r}\left(V^{*}\right)$ $=V_{r} / M_{r}$, then the range of S_{r} is the space of symmetric covariant r-tensors $\mathcal{S}\left(V_{r}\right)$, and S_{r} induces an isomorphism \bar{k} of the space $P^{r}\left(V^{*}\right)$ onto $\mathcal{S}\left(V_{r}\right)$ such that $\bar{k} \varphi=S_{r}$. Therefore

$$
S_{r}\left(x_{1}^{\prime} \otimes \cdots \otimes x_{r}^{\prime}\right)=\bar{k}\left(x_{1}^{\prime} \cdots x_{r}^{\prime}\right) .
$$

For any $\theta \varepsilon \mathcal{S}\left(V^{r} ; F\right)$, there exists an element $z^{\prime}(\theta) \varepsilon V_{r}\left[\approx\left(V^{r}\right)^{*}\right]$ such that

$$
\left\langle x_{1} \otimes \cdots \otimes x_{r} z^{\prime}(\theta)\right\rangle=\theta\left(x_{1} \otimes \cdots \otimes x_{r}\right)
$$

for $x_{1} \otimes \cdots \otimes x_{r} \varepsilon V^{r}$. It is easily shown that $z^{\prime}(\theta)$ is symmetric element in V_{r} and that the map $z^{\prime}: \theta \rightarrow z^{\prime}(\theta)$ is an isomorphism from $\mathcal{S}\left(V^{r} ; F\right)$ onto $\mathcal{S}\left(V_{r}\right)$.

From the above discussion we have the following diagram:

Thus we have

$$
P^{r}\left(V^{*}\right) \approx\left(P^{r}(V)\right)^{*} .
$$

Let $i=k^{-1} z^{\prime-1} \bar{k}$ be the composed isomorphism: $P^{r}\left(V^{*}\right) \rightarrow\left(P^{r}(V)\right)^{*}$. If we put $\theta=z^{\prime-1} \bar{k}\left(x_{1}^{\prime} \cdots x_{r}^{\prime}\right)$ where $x_{1}^{\prime} \cdots x_{r}^{\prime} \in P^{r}\left(V^{*}\right)$, we have $z^{\prime}(\theta)$ $=\bar{k}\left(x_{1}^{\prime} \cdots x_{r}^{\prime}\right)=S_{r}\left(x_{1}^{\prime} \otimes \cdots \otimes x_{r}^{\prime}\right)$. Consequently

$$
\left.\begin{array}{rl}
& \left\langle x_{1} \cdots x_{r}\right. \\
= & \left.k^{-1} z^{\prime-1} \bar{k}\left(x_{1}^{\prime} \cdots x_{r}^{\prime}\right)\right\rangle \\
= & \left\langle x_{1} \cdots x_{r} \quad k^{-1}(\theta)\right\rangle \\
= & \theta\left(x_{1} \otimes \cdots \otimes x_{r}\right) \\
= & \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad z^{\prime}(\theta)\right\rangle \\
= & \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad S_{r}\left(x_{1}^{\prime} \otimes \cdots \otimes x_{r}^{\prime}\right)\right\rangle \\
= & \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad \sum_{\sigma} x_{\sigma(1)}^{\prime} \otimes \cdots \otimes x_{\sigma(r)}^{\prime}\right\rangle \\
= & \sum_{\sigma}\left\langle x_{1}\right.
\end{array} x_{\sigma(1)}^{\prime}\right\rangle\left\langle x_{2} \quad x_{\sigma(2)}^{\prime}\right\rangle \cdots\left\langle x_{r} \quad x_{\sigma(r)}^{\prime}\right\rangle .
$$

Thus, if we identify the corresponding elements under the isomorphism $i=k^{-1} z^{\prime-1} \bar{k}$, then we have

$$
\left.\begin{array}{cl}
\left\langle x_{1} \cdot x_{2} \cdots x_{r}\right. & \left.x_{1}^{\prime} \cdot x_{2}^{\prime} \cdots x_{r}^{\prime}\right\rangle \\
=\sum_{\sigma}\left\langle x_{1} x_{\sigma(1)}^{\prime}\right\rangle\left\langle x_{2}\right. & \left.x_{\sigma(2)}^{\prime}\right\rangle \cdots\left\langle x_{r}\right.
\end{array} x_{\sigma(r)}^{\prime}\right\rangle . .
$$

Next, let $u: V \rightarrow V^{*}$ be the conjugate isomorphism, and $u^{r}: V^{r} \rightarrow V_{r}$
be the r-th power of u. If $\eta: V_{r} \rightarrow P^{r}\left(V^{*}\right)$ be the natural projection, then $\eta u^{r}: V^{r} \rightarrow P^{r}\left(V^{*}\right)$ is a symmetric linear map. Then there exists a linear map $P^{r} u: P^{r}(V) \rightarrow P^{r}\left(V^{*}\right)$ such that $\left(P^{r} u\right) \circ \varphi=\eta^{\circ} u^{r}$, and

$$
\left(P^{r} u\right)\left(x_{1} \cdots x_{r}\right)=u\left(x_{1}\right) \cdots u\left(x_{r}\right)
$$

Now we have the following:
Theorem 2. $P^{r} u$ is the conjugate isomorphism between $P^{r}(V)$ and $P^{r}\left(V^{*}\right)$ [identified with $\left(P^{r}(V)\right)^{*}$].

Proof. Under the isomorphism between $P^{r}(V)$ and $\mathcal{S}\left(V^{r}\right), x_{1} \cdots x_{r}$ corresponds to $S_{r}\left(x_{1} \otimes \cdots \otimes x_{r}\right)$. And the inner product in V^{r} gives rise to the following definition of inner product in $P^{r}(V)$.

$$
\begin{aligned}
& \left(x_{1} \cdots x_{r} \quad y_{1} \cdots y_{r}\right) \\
= & (1 / r!)\left(S_{r}\left(x_{1} \otimes \cdots \otimes x_{r}\right) \quad S_{r}\left(y_{1} \otimes \cdots \otimes y_{r}\right)\right) \\
= & (1 / r!)\left(\sum_{\sigma} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(r)} \sum_{\tau} y_{\tau(1)} \otimes \cdots \otimes y_{\tau(r)}\right) \\
= & (1 / r!) \sum_{\sigma} \sum_{\tau}\left(x_{\sigma(1)} y_{\tau(1)}\right) \cdots\left(x_{\sigma(r)} y_{\tau(r)}\right) \\
= & \sum_{\tau}\left(x_{1} y_{\tau(1)}\right) \cdots\left(x_{r} y_{\tau(r)}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \left\langle x_{1} \cdots x_{r} \quad\left(P^{r} u\right)\left(y_{1} \cdots y_{r}\right)\right\rangle \\
= & \left\langle x_{1} \cdots x_{r} \quad u\left(y_{1}\right) \cdots u\left(y_{r}\right)\right\rangle \\
= & \sum_{\tau}\left\langle x_{1} u\left(y_{\tau(1)}\right)\right\rangle \cdots\left\langle x_{r} u\left(y_{\tau(r)}\right)\right\rangle \\
= & \sum_{\tau}\left(x_{1} y_{\tau(1)}\right) \cdots\left(x_{r} y_{\tau(r)}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(x_{1} \cdots x_{r}\right. \\
= & \left.y_{1} \cdots y_{r}\right) \\
=\left\langle x_{1} \cdots x_{r}\right. & \left.\left(P^{r} u\right)\left(y_{1} \cdots y_{r}\right)\right\rangle .
\end{aligned}
$$

The general relation follows from the bilinearity of $\langle x y\rangle$ and the linearity of $P^{r} u$.

From the above discussion it is also easily seen that the following relations can be respectively used as the definition of inner product in $V^{r}, \Lambda^{r}(V)$ and $P^{r}(V)$:

$$
\begin{array}{ll}
(x y)=\left\langle x u^{r}(y)\right\rangle ; & x, y \varepsilon V^{r}, \\
(x y)=\left\langle x\left(\Lambda^{r} u\right) y\right\rangle ; & x, y \varepsilon \Lambda^{r}(V), \\
(x y)=\left\langle x\left(P^{r} u\right) y\right\rangle ; & x, y \in P^{r}(V) .
\end{array}
$$

4. It is well known that the Grassmann algebra

$$
\Lambda(V)=\Lambda^{0}(V)+\Lambda^{1}(V)+\cdots+\Lambda^{n}(V) \quad \text { (direct sum) }
$$

is a vector space of dimension 2^{n} and that $\Lambda(V)^{*} \approx \Lambda\left(V^{*}\right)$, where V^{*} is the dual space of V. Moreover, if we identify the corresponding elements under this isomorphism, the pairing of these two spaces satisfies the following [1]:

$$
\left\langle x \quad x^{\prime}\right\rangle=\left\langle\sum_{p=0}^{n} x_{p} \sum_{p=0}^{n} x_{p}^{\prime}\right\rangle=\sum_{p=0}^{n}\left\langle x_{p} x_{p}^{\prime}\right\rangle
$$

where $x=\sum_{p=0}^{n} x_{p} \varepsilon \Lambda(V), x^{\prime}=\sum_{p=0}^{n} x_{p}^{\prime} \varepsilon \Lambda\left(V^{*}\right)$ with $x_{p} \varepsilon \Lambda^{p}(V)$ and $x_{p}^{\prime} \varepsilon \Lambda^{p}\left(V^{*}\right)$.

Let u be the conjugate isomorphism from V onto V^{*}. Denote \bar{u} the canonic prolongment [1] of u in $\Lambda(V)$, then for $y=\sum_{p=0}^{n} y_{p} \varepsilon \Lambda(V)$, we have

$$
\bar{u}(y)=\sum_{p=0}^{n}\left(\Lambda^{p} u\right) y_{p}
$$

where $\Lambda^{p} u$ is the p-th exterior power of u.
Now we define (x, y) in $\Lambda(V)$ by the following:

$$
(x, y)=\langle x, \bar{u}(y)\rangle .
$$

Then, we can prove easily that (x, y) is an inner product as follows:
By definition, we have

$$
\begin{aligned}
(x, y) & =\left(\sum_{p=0}^{n} x_{p} \sum_{p=0}^{n} y_{p}\right)=\left\langle\sum_{p=0}^{n} x_{p} \sum_{p=0}^{n}\left(\Lambda^{p} u\right) y_{p}\right\rangle \\
& =\sum_{p=0}^{n}\left\langle x_{p}\left(\Lambda^{p} u\right) y_{p}\right\rangle=\sum_{p=0}^{n}\left(x_{p} y_{p}\right)
\end{aligned}
$$

where ($x_{p} y_{p}$) is the inner product defined above (§1).
Consequently, we have

1) $\overline{(x y)}=\sum_{p=0}^{n} \overline{\left(x_{p} y_{p}\right)}=\sum_{p=0}^{n}\left(y_{p} x_{p}\right)=\left(\begin{array}{ll}y & x\end{array}\right)$.
2) Evidently $(\alpha x+\beta y, z)=\alpha(x z)+\beta(y z) ; \alpha, \beta \varepsilon F, x, y, z \varepsilon \Lambda(V)$.
3) $(x x)=\sum_{p=0}^{n}\left(x_{p} x_{p}\right)$ is real and is $\geqq 0$. Moreover, as $\left(x_{p} x_{p}\right)=0$ if and only if $x_{p}=0$, so $(x)=0$ if and only if $x=0$.

Thus we have the following:
Theorem 3. With inner product ($x y$) defined above, $\Lambda(V)$ is a unitary space, and the conjugate isomorphism between $\Lambda(V)$ and $\Lambda\left(V^{*}\right)$ is given by the canonic prolongment \bar{u} of u.

References

[1] N. Bourbaki: Algèbre, Chapitre III, Algèbre Multilinéaire, Hermann et Cie, Paris (1948).
[2] S. S. Chern: Differentiable manifold, Chicago lecture notes (1953).
[3] P. R. Halmos: Finite Dimensional Vector Spaces, Princeton University Press (1948).
[4] A. Lichnerowicz: Éléments de Calcul tensoriel, Colin, Paris (1950).

[^0]: *) I wish to express my cordial thanks to Prof. S. Sasaki for his kind guidance and encouragement.
 **) In the sequel we follow the notation of S. S. Chern [2]. The number in bracket denotes the references at the end of this paper.

