59. On Ring Homomorphisms of a Ring of Continuous Functions

By Takesi ISIWATA

Tokyo Gakugei University, Tokyo (Comm. by K. KUNUGI, M.J.A., June 12, 1959)

Let γ be a linear subring of C(X) and $H(\gamma)$ the totality of nontrivial ring homomorphisms¹⁾ on γ and $H_0(\gamma) = H(\gamma) \cup \{\varphi_0\}$ where φ_0 denotes the trivial ring homomorphism, i.e. $\varphi_0 = 0$ on γ . We shall say that γ has the property (H) if the following property holds:

(H). any $\varphi \in H(\gamma)$ is a point ring homomorphism φ_x^{1} . If $H(\gamma)$ is replaced by $H_0(\gamma)$, then we shall call that γ has the property (H_0) . In case the property (H) or (H_0) holds respectively, if $\varphi_x \neq \varphi_y$ for $x \neq y$, then we say that γ has the property (H^*) or (H_0^*) respectively. Ishii [1] and Mrókwa [2] have obtained necessary and sufficient conditions that a subring γ containing constant functions has the property (H^*) or (H) respectively, under some conditions on γ . We denote by (h) one of the properties (H^*) , (H), (H_0^*) and (H_0) . In this paper we shall give a necessary and sufficient condition that C(X) has a linear subring on which the property (h) is satisfied.²⁰ Moreover, we shall generalize Ishii's and Mrókwa's results, and give a weaker condition for which γ has the property (H).

1. Suppose that γ is a linear subring which has the property (h). Let us put

 $\hat{x} = \{y; f(x) = f(y) \text{ for all } f \in \gamma\}.$

 \hat{x} is a closed subset of X because $\hat{x} = \bigcap_{f \in r} f^{-1}(\alpha)$ where $f(x) = \alpha$. Then X is divided into a family $\hat{X} = \{\hat{x}; x \in X\}$ of disjoint closed subsets of X. We shall define uniform neighborhoods of \hat{x} by

 $W(f_1, \dots, f_n; \varepsilon)(\hat{x}) = \{\hat{y}; |f_i(x) - f_i(y)| < \varepsilon, i = 1, 2, \dots, n\}$

where $f_i \in \gamma$ and $\varepsilon > 0$. Then X becomes a uniform space with the uniform basis $\{W(f_1, \dots, f_n; \varepsilon); f_i \in \gamma, \varepsilon > 0\}$. In the following we denote by $Y = X/\gamma$ such a uniform space.

Let η be a mapping of X into Y defined by $\eta(x) = \hat{x}$ and η^* be a mapping of C(Y) into C(X) defined by $(\eta^* f)(x) = f(\eta(x))$ where $f \in C(Y)$ and $x \in X$. Then η is continuous and $\eta(x) = \eta(y)$ for any $y \in \hat{x}$ implies

¹⁾ A space X considered here is always a completely regular T_1 -space, and other terminologies used here, for instance, C(X), B(X), ring homomorphisms and local Q-completeness, are the same as in [6, 7].

²⁾ If we mean by H(r) the totality of non-trivial ring homomorphisms of r into R, then we can replace by a subring a linear subring in Theorem 1 and Corollaries 1-5.

that $\eta^{*^{-1}}(\gamma)$ is a linear subring (written γ_Y) of C(Y) and it is obvious that $\eta^*|\gamma_Y$ is one-to-one and γ_Y separates points of Y.

1) If γ has the property (h), then γ_{Y} has the property (h). Since $\varphi = \psi \eta^{*^{-1}}$ is a ring homomorphism of γ where ψ is a ring homomorphism of γ_{Y} , there exists a point x in X such that $\varphi = \varphi_{x}$. Therefore $\varphi_{x}(f) = f(x)$ implies that, for any $g \in \gamma_{Y}$, $\psi(g) = \psi(\eta^{*^{-1}}\eta^{*}(g)) = (\psi \eta^{*^{-1}})(\eta^{*}(g)) = (\eta^{*}(g))(x) = g(\eta(x)) = g(\hat{x}) = \psi_{\hat{x}}(g)$.

Any $f \in \gamma_Y$ has a continuous extension \tilde{f} over νY . In the following we denote \tilde{f} by such a continuous extension of f over νY . If there exists a point p in $\nu Y - Y$, $\varphi_p(\tilde{f}) = \tilde{f}(p)$ is a ring homomorphism on γ_Y since γ_Y is linear.³⁰ Hence either there is a point x in Y such that $\varphi_p = \varphi_x$ (not necessarily $\varphi_x \neq 0$) or $\varphi_p = 0$ on γ_Y . Let us put $B = \{p; \varphi_p = 0, p \in \nu Y\}$ and $\tilde{x} = \{y; \varphi_y = \varphi_x, y \in \nu Y \text{ and } \varphi_x \neq 0\}$. Then Bis a closed subset of νY because $B = \bigcap_{f \in \gamma_Y} \tilde{f}^{-1}(0)$. Since γ_Y separates the point of Y, $\tilde{x} \subseteq Y = \{x\}$ for each point $x \in Y$. We have moreover the following

2) $\widetilde{x} = \{x\}$ for each point x in Y. Suppose that $\widetilde{x} \in p \in \nu Y - Y$. Let $\{a_{\alpha}; \alpha \in Y\}$ be a directed set which converges to p and $a_{\alpha} \in Y$ for each α . For any $f_1, \dots, f_n \in \gamma_Y$, $\varepsilon > 0$, there exists an index α_0 such that $W(\widetilde{f}_1, \dots, \widetilde{f}_n; \varepsilon)(p) \ni a_{\alpha}$ for $\alpha > \alpha_0$. By the assumption $\widetilde{x} \ni p$, we have $W(f_1, \dots, f_n; \varepsilon)(x) \ni a_{\alpha}$ for $\alpha > \alpha_0$. This means $\{a_{\alpha}; \alpha \in p\}$ converges to x, that is, x = p. This is a contradiction.

From 2) we have

3) $\nu Y = Y \smile B$, $Y \frown B = \theta$, that is, Y is open in νY , in other words, Y is locally Q-complete (see [6]).

4) If $B=\theta$, then Y is a complete uniform space and hence Y is a Q-space. For the structure of Y is generated by a subset γ_Y of C(Y).

5) If γ contains constant functins, then $B=\theta$. For if γ contains constant functions, then $\varphi_p \neq 0$ for any $p \in \gamma Y$.

6) If γ has the property (H_0) , then $B = \theta$.

2. Theorem 1. C(X) has a linear subring on which the property (H) holds if and only if there exists a locally Q-complete space Y which is a continuous image of X.

Proof. If C(X) contains a subring γ on which the property (H) holds, then by 3), $Y = X/\gamma$ is locally Q-complete. Conversely if X has a continuous image Y which is locally Q-complete, then $C_B(Y)$, where B is a closure of $\nu Y - Y$ in βY , has the property (H^*) by Theorem 1 in [7]. On the other hand, $C_B(Y)$ can be considered as a linear subring of C(X), and hence C(X) has a subring on which the property

³⁾ If r_Y is not linear, $\varphi_p(r_Y)$ may be a proper subring of R.

(H) holds.

In Theorem 1, if Y is not a Q-space, then we have a Q-space which is a continuous image of Y by Theorem 1 in [6]. Conversely, for any Q-space Z, it is well known that C(Z) has the property (H^*) [3, 4]. Therefore we can state Theorem 1 as follows: C(X) has a linear subring on which (H) holds if and only if there exists a Q-space which is a continuous image of X. For the properties (H_0) or (H_0^*) , it is an open question, in Theorem 1, whether (H) is replaced by (H_0) or not. But we notice that if C(X) has the property (H_0) , Y is a Q-space, conversely if Y is a Q-space which contains a subset Y_1 such that $\nu Y_1 = Y$ or Y is a one-point Q-completion of Y_1 , then C(X) has a linear subring on which the property (H_0) holds [7, 8].

The following corollaries are an immediate consequences of Theorem 1.

Corollary 1. C(X) has a linear subring on which the property (H^*) holds if and only if there is a locally Q-complete space which is a one-to-one continuous image of X.

Corollary 2. C(X) has a linear subring γ such that γ has the property (H^*) and γ generates a structure of X if and only if X is locally Q-space.

In Corollary 2, if γ has constant functions, X is always a Q-space. If γ has no constant functions, the X is not necessarily a Q-space. Such an example is given in [7].

If γ is a subring of B(X), then we have the following corollaries replacing νY by βY in the arguments in §1.

Corollary 3. B(X) has a linear subring on which the property (H) or (H_0) if and only if there is a locally compact space Y which is a continuous image of X.

In this case it is easily seen that Y is replaced by a compact space Z. Such a compact space Z is given by a space which is obtained from βY by contracting $\beta Y - Y$ to a point in Y. The next corollaries 4 and 5 follow from Corollaries 2 and 3.

Corollary 4. B(X) has a linear subring on which the property (H^*) or (H^*_0) if and only if there exists a locally compact space which is a one-to-one continuous image of X.

Corollary 5. B(X) has a linear subring γ such that γ has the property (H^*) or (H^*_0) and γ generates a structure of X if and only if X is a locally compact space.

In Corollary 5, if either γ contains constant functions or has the property (H_0^*) , then X is always compact by 5) and 6).

3. In this section, we assume that γ contains constant functions, and we shall give, under some conditions, a necessary and sufficient condition that γ has the property (H).

 $\mathbf{270}$

No. 6] On Ring Homomorphisms of a Ring of Continuous Functions

Theorem 2. Let γ be a subring of C(X) which satisfies the following conditions:

1) γ contains constant functions,

2) if $\gamma \ni f$, $f \ge \alpha > 0$, then $\gamma \ni 1/f$.

Then γ has the property (H) if and only if a uniform space $Y = X/\gamma$ is complete.

Proof. Necessity follows from Theorem 1 and 5) in § 1. Sufficiency follows immediately from the proof of sufficiency of Theorem 1 in [1] if we replace γ and X by γ_Y and Y respectively, and we notice that Y is a complete uniform space.

Theorem 2 is a generalization of Mrókwa's Theorem 2 in [2] and the condition on γ is weaker than Mrókwa conditions on γ . The following theorem is obtained by Mrókwa (Theorem 1 in [2]) in the another form:

Theorem 3 (Mrókwa). Let γ be a subring of B(X) which satisfies the following conditions:

1) γ contains constant functions,

2) γ is uniformly closed.

Then γ has the property (H) if and only if $Y=X/\gamma$ is compact.

Proof. Necessity follows from the note in the end of § 2. Conversely, suppose that Y is a compact space. Since γ contains constant functions and is uniformly closed, γ_Y also contains constant functions and is uniformly closed. Therefore, γ_Y coincides with C(Y) by Stone's theorem [5]. On the other hand, C(Y) is considered as a subring C_1 of C(X) and it is easy to see that C_1 coincides with γ .

Finally we shall prove the following theorem which is the first part of Theorem 3 in [3] as an application of Theorem 2.

Theorem 4 (Mrókwa). Let X be a Lindelöf space. If γ is a subring of C(X) which satisfies the following conditions:

1) γ contains constant functions,

2) γ is uniformly closed,

3) if $\gamma \ni f > 0$, then $1/f \in \gamma$.

Then γ has the property (H).

Proof. Let $Y = X/\gamma$ and \tilde{Y} be a completion of a uniform space Y. If we replace νY by \tilde{Y} in the arguments in § 1, then it is easy to see, using the same method used as in the proof of 2) in § 1, that B consists of only one point p, that is, $\tilde{Y} = Y \smile \{p\}$. It is obvious that γ_Y satisfies the conditions (1), (2) and (3), and any $f \in \gamma_Y$ has a continuous extension over \tilde{Y} . Let us put $\tilde{\gamma} = \{\tilde{f}; f \in \gamma\}$. Then $\tilde{\gamma}$ is a subring of $C(\tilde{Y})$ and $\tilde{\gamma}$ has the properties (1) and (2) in Theorem 2. Since \tilde{Y} has the complete structure generated by $\tilde{\gamma}, \tilde{\gamma}$ has the property (H) by Theorem 2. It is therefore sufficient to prove theorem that $Y = \tilde{Y}$. T. ISIWATA

[Vol. 35,

For this purpose, we shall show that the existence of the point p leads a contradiction. Since γ_Y separates points of Y and $\tilde{f}(p)=0$ for all $f \in \gamma_Y$, there is a function $f_y \in \gamma_Y$ for any point y in Y such that $f_y(y) \neq 0$. Let us put $U(y; f_y) = \{x; |f_y^2(x) - f_y^2(y)| < f_y^2(y)/2\}$. Then $\{U(y; f_y); y \in Y\}$ forms an open covering of Y. Since Y is a continuous image of X, Y is a Lindelöf space, and hence there is a countable subcovering $\{U(y_n; f_{y_n}); n=1, 2, \cdots\}$. Let us put $f_i = f_{y_i}$ and

$$g_n = \sum_{i=1}^n \frac{1}{2^i} \frac{f_i^2}{1 + f_i^2}$$

Then $\{g_n; n=1, 2, \cdots\}$ converges uniformly to $g = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{f_i^2}{1+f_i^2}$. Since

 γ_Y satisfies the condition 2), we have $g \in \gamma_Y$. By the methods of construction of g_n , g is positive on Y and $\tilde{g}(p)=0$. But the positiveness of g on Y implies that $1/g \in \gamma_Y$ by the property 3). On the other hand, 1/g has not a continuous extension over \tilde{Y} . This is a contradiction. Therefore we have $Y = \tilde{Y}$.

References

- T. Ishii: On homomorphisms of the ring of continuous functions onto the real numbers, Proc. Japan Acad., 33, 419-423 (1957).
- [2] S. Mrókwa: Functionals on uniformly closed rings of continuous functions, Fund. Math., 46, 81-87 (1958).
- [3] E. Hewitt: Rings of real-valued continuous functions I, Trans. Amer. Math. Soc., 64, 45-99 (1948).
- [4] E. Hewitt: Linear functionals on spaces of continuous functions, Fund. Math., 37, 161-189 (1950).
- [5] M. H. Stone: Applications of the theory of Boolean rings to the general topology, Trans. Amer. Math. Soc., 41, 375-481 (1937).
- [6] T. Isiwata: On locally Q-complete spaces. I, Proc. Japan Acad., 35, 232-236 (1959).
- [7] T. Isiwata: On locally Q-complete spaces. II, Proc. Japan Acad., 35, 263-267 (1959).
- [8] T. Isiwata: On locally Q-complete spaces. III (to appear).