104. On Singular Perturbation of Linear Partial Differential Equations with Constant Coefficients. I

By Mitio NAGUMO

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

1. Introduction. Let $(t, x) = (t, x_1, \dots, x_m)$ be m+1 real variables in $t \ge 0$, $x \in E^m$, where E^m denotes the *m*-dimensional Euclidean space. Let L_{ϵ} be an $r \times r$ matrix of differential operators with constant coefficients depending on a parameter ε

$$L_{\varepsilon} = \sum_{j=1}^{t} P_{j} \left(\partial_{x}, \varepsilon \right) \partial_{t}^{j \, \text{\tiny D}}$$

where P_j (ξ , ε) are $r \times r$ matrices of polynomials in $\xi = (\xi_1, \dots, \xi_m)$, whose coefficients depends on $\varepsilon \ge 0$ continuously, and let us consider a system of partial differential equations

(1) $L_{\epsilon}[u] = f(t, x, \varepsilon),$ where $u = (u_{\rho} \ \rho \downarrow 1, \dots, r) \ f = (f_{\rho} \ \rho \downarrow 1, \dots, r).^{2}$ We assume that $P_{\iota}(\xi, \varepsilon) = P_{\iota}(\varepsilon)$ does not contain ξ and (2) det $(P_{\iota}(\varepsilon)) \neq 0$ for $\varepsilon > 0.$

In this note we are concerned with showing the relationship of (1), as $\varepsilon \downarrow 0$, to a particular solution of a related system (for $\varepsilon = 0$) (1°) $L_0[u] = f(t, x, 0)$, especially when L_0 is degenerated, i.e. (2°) $\det (P_1(0)) = 0.^{30}$

Let C_0^{∞} be the set of all on E^m infinite times continuously differentiable complex valued functions with compact carrier. For any $u \in C_0^{\infty}$ we define the norm $||u||_p$ by

$$(3) \qquad || u ||_{p}^{3} = \int_{E^{m}} \sum_{|\nu| \leq p} |\partial_{1}^{\nu_{1}} \cdots \partial_{m}^{\nu_{m}} u(x)|^{2} dx,^{4} (|\nu| = \nu_{1} + \cdots + \nu_{m}).$$

The completion of C_0^{∞} with respect to the norm (3) will be denoted by H_p . H_p is a kind of Hilbert space. One sees easily

 $H_p \, \supset \, H_{p'} \, \, ext{and} \, \, || \, u \, ||_p \! \leq \! || \, u \, ||_{p'} \, \, ext{if} \, \, p \! < \! p'.$

We set $H_{\infty} = \bigcap_{p < \infty} H_p$, then H_{∞} is a linear topological space with a sequence of semi-norms $||u||_p$ $(p=0, 1, 2, \cdots)$ for $u \in H_{\infty}$. H_{∞} is dense

in H_p for any p, and C_0^{∞} is dense in H_{∞} (hence in H_p). Let $\hat{\varphi}$ be the Fourier transform of $\varphi \in H_p$,

(4)
$$\widehat{\varphi}(\xi) = \frac{1}{\sqrt{2\pi^m}} \int_{E^m} e^{-i\xi \cdot x} \varphi(x) dx = \widetilde{\mathfrak{F}}[\varphi],$$

¹⁾ We use ∂_t for ∂/∂_t , and ∂_x for $\partial/\partial x_1, \dots, \partial/\partial x_m$.

²⁾ $(u_{\rho} \ \rho \downarrow 1, \dots, r)$ means the r-dimensional vector (column) with the components (u_1, \dots, u_r) .

³⁾ The condition (2) is not essential in the general consideration.

⁴⁾ ∂_{μ} is the abbreviation of $\partial/\partial x_{\mu}$.

M. NAGUMO

then $\varphi \in H_p$ is equivalent to $(1+|\xi|^2)^{p/2} \widehat{\varphi}(\xi) \in L^2$ and (5) $||\varphi||_p^2 = \int_{\mathbb{R}^m} (1+|\xi|^2)^p |\widehat{\varphi}(\xi)|^2 d\xi = ||\widehat{\varphi}||_p^{p/2}.$

The complete space of all measurable complex valued functions $\widehat{\varphi}$ such that $|| \widehat{\varphi} ||'_p < \infty$ will be denoted by \widehat{H}_p .⁵⁾ The Fourier transform $\widetilde{\vartheta}$ is a unitary transformation of H_p onto \widehat{H}_p .

For any real number $p \ge 0$, we can define the norm $||\varphi||_p$ for $\varphi \in C_0^{\infty}$ by (5). If $p \ge 0$, then the completion of C_0^{∞} which we denote by H_p , with respect to the norm (5) is the set of all complex valued measurable functions such that $||\varphi||_p < \infty$.⁵⁾ But if p < 0, the completion of C_0^{∞} with respect to (5) consists from a class of distributions by L. Schwarz. The Fourier transform of H_p , denoted by \hat{H}_p , even if p < 0, is the set of all measurable functions $\hat{\varphi}^{5}$ such that $||\hat{\varphi}||_p < \infty$ by (5).

Let $D^{(k)}$ be any differential operator with constant coefficients of order k, then $D^{(k)}$ is a bounded linear mapping of H_p into H_{p-k} .

Let F_x be any linear functional space, whose elements are functions of $x \in E^m$, and $\varphi(t)$ be a variable element of F_x depending on a real parameter t in an interval J. We say " $\varphi(t)$ is F_x -continuous in $t \in J$ " if the mapping $t \in J \longrightarrow \varphi(t) \in F_x$ is continuous, and " $\varphi(t)$ is F_x -differentiable at $t=t_0$ " if

(6)
$$(t-t_0)^{-1}\{\varphi(t)-\varphi(t_0)\} \rightarrow \varphi'(t_0) \text{ in } F_x \text{ as } t \rightarrow t_0.$$

We use the notation $\varphi'(t) = \frac{d}{dt}\varphi(t)$, if $\varphi'(t)$ defined by (6) has meaning

for t in an interval. If $D^{(k)}$ is a differential operator in $x \in E^m$ with constant coefficients of order k and $\varphi(t)$ is $H_{p,x}$ -continuous in t, then $D^{(k)}\varphi(t)$ is $H_{p-k,x}$ -continuous, and if $\varphi(t)$ is $H_{p,x}$ -differentiable in t then $D^{(k)}\varphi(t)$ is $H_{p-k,x}$ -differentiable in t and

$$\frac{d}{dt} \Big\{ D^{(k)} \varphi(t) \Big\} = D^{(k)} \Big\{ \frac{d}{dt} \varphi(t) \Big\} \, .$$

Let u=u(t)=u(t, x) be *l* times continuously $H_{p,x}$ -differentiable in $t \in J$, and *L* be a differential operator in (t, x) with constant coefficients defined by

(7
$$L[u] = \sum_{j=0}^{l} P_{j}(\partial_{x}) \partial_{t}^{j} u(t, x),$$

where $P_{j}(\xi)$ are polynomials in $\xi = (\xi_{1}, \dots, \xi_{m})$ of degree at most k with constant coefficients. Then L[u](t) is $H_{p-k,x}$ -continuous in $t \in J$. Putting (8) L[u](t) = f(t)

we say u(t) is an H_p -solution of the equation (8).

Now we extend the operator L as follows:

⁵⁾ Strictly speaking, each element of the space is a such class of functions, that any pair of which differ at most on a set of measure zero.

Definition 1. Let $\{u_{\nu}(t)\}_{\nu=1}^{\infty}(u_{\nu}(t) = u_{\nu}(t, x))$ be a sequence of l times continuously $H_{p,x}$ -differentiable functions in $t \in J$, such that as $\nu \to \infty$, $u_{\nu}(t) \to u(t)$ in $H_{p,x}$ quasi-uniformly for $t \in J$, ω and $L[u_{\nu}(t)]$ $\rightarrow f(t)$ in $H_{p-k,x}$ quasi-uniformly for $t \in J$. Then we define L[u(t)]= f(t) for $t \in J$, and we say u(t) is a generalized H_p -solution of (8).

A generalized H_p -solution is naturally $H_{p,x}$ -continuous in t, but it is not necessarily $H_{p,x}$ -differentiable in t. This extension of the operator L is free from absurdity. Because, L is a pre-closed linear operator as follows:

If $u_{\nu}(t) \rightarrow 0$ in $H_{p,x}$ quasi-uniformly for $t \in J$, and $L[u_{\nu}(t)] \rightarrow f(t)$ in $H_{p-k,x}$ quasi-uniformly for $t \in J$, then f(t)=0 for $t \in J$.

We say "a system $u_1(t), \dots, u_r(t)$ has property (P)" if each $u_r(t)$ $(\rho = 1, \dots, r)$ has the property (P). The above definitions and related statements can be all extended to a system of functions and system of operators in a quite similar way, so that we need not explain them in detail.

2. Preliminary theorems. In the following let us give some preliminary theorems without proof.

Let L be a matrix of differential operators

$$L = \sum_{j=1}^{l} P_{j}(\partial_{x}) \partial_{t}^{j}$$

where $P_i(\xi)$ are $r \times r$ matrices of polynomials in $\xi = (\xi_1, \dots, \xi_m)$ at most of order k with constant coefficients, and $P_{l}(\xi) = P_{l}$ be a constant matrix such that det $(P_i) \neq 0$.

Theorem 1. If u=u(t)=u(t,x) is a generalized H_p -solution of $L\lceil u \rceil = f(t)$ for $t \in J$, then there exists a sequence of l times continuously $C_{0,x}^{\infty}$ -differentiable $u_{\nu}(t) = u_{\nu}(t, x)$ for $t \in J$, such that as $\nu \to \infty$, $u_{\nu}(t) \to \infty$ u(t) in $H_{p,x}$ quasi-uniformly for $t \in J$, and $L[u_{\nu}(t)] \rightarrow f(t)$ in $H_{p-k,x}$ quasi-uniformly for $t \in J$.

We associate the partial differential equation L[u] = f(t) with the following ordinary differential equation

(2.1)
$$\sum_{\mu=0}^{l} P_{\mu}(i\xi) \left(\frac{d}{dt}\right)^{\mu} Y=0.$$

Let $Y_i(t,\xi)$ be matricial solutions of (2.1) with the initial conditions $(\partial_t^{k-1}Y)_{t=0} = \delta_{ik} \mathbf{1}.$

Theorem 2. If there exist constants C and q such that $|Y_{i}(t,\xi)|^{\tau_{0}} \leq C \sqrt{1+|\xi|^{2}} (j=1,\cdots,l) \text{ for } 0 \leq t \leq T$ (2.2)and f(t, x) is $H_{p,x}$ -continuous in $0 \leq t \leq T$, then the partial differential equation

(2.3)
$$L[u] = \sum_{\mu=0}^{t} P_{\mu}(\partial_{x})\partial_{t}^{\mu}u = f(t, x)$$

^{6) &}quot;Quasi-uniform for t∈J" means "uniform for any compact part of J".
7) |Y| is the norm of the matrix Y, defined by |Y|=Sup{|Yu|/|u|}.

M. NAGUMO

has generalized $H_{p_{-q}}$ -solution u=u(t, x) with the initial conditions $\partial_t^{j-1}u(0, x) = \varphi_j(x)$ $(j=1, \cdots, l),$

where φ_j are arbitrary functions of $H_{p,x}$. Further if $p \ge q$, then this solution u = u(t, x) is represented by

(2.4)
$$u(t, x) = \sum_{j=1}^{l} \frac{1}{\sqrt{2\pi^{m}}} \int_{E^{m}} e^{ix\cdot\xi} Y_{j}(t,\xi) \widehat{\varphi}_{j}(\xi) d\xi + \frac{1}{\sqrt{2\pi^{m}}} \int_{E^{m}} e^{ix\cdot\xi} d\xi \int_{0}^{t} P_{l}^{-1} Y_{l}(t-\tau,\xi) \ \widehat{f}(\tau,\xi) dt,$$

where $\hat{\varphi}_j$ and \hat{f} are Fourier transforms of φ_j and f respectively as functions of x.

Further if

$$|\partial_t^{k-1}Y_j(t,\xi)| < C \sqrt{1+|\xi|^2} \text{ for } 0 \leq t \leq T,$$

 $k=1, \dots, l, j=1, \dots, l$, then the solution u=u(t, x) is an $H_{p_{-q}}$ -solution in proper sense.

3. Stability. Consider a system of equations containing a parameter ε

(3.1)
$$L_{\varepsilon}[u] = \sum_{\mu=0}^{l} P_{\mu}(\partial_{x}, \varepsilon) \partial_{t}^{\mu} u = f_{\varepsilon}(t, x),$$

where $P_{\mu}(\xi, \varepsilon)$ are $r \times r$ matrices of polynomials in $\xi = (\xi_1, \dots, \xi_m)$ with constant coefficients depending on ε continuously for $\varepsilon \ge 0$, and $P_{\iota}(\varepsilon) = P_{\iota}(\xi, \varepsilon)$ depends on ε only and

det $(P_{l}(\varepsilon)) \neq 0$ for $\varepsilon > 0$.

Definition 2. We say that the equation (3.1) is H_p -stable for $\varepsilon \downarrow 0$ in $0 \leq t \leq T$ with respect to a particular solution $u=u_0(t)$ of (3.1) for $\varepsilon=0$, if and only if,

 $u_{*}(t) \rightarrow u_{0}(t)$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$,

(3.2) $f_{*}(t) = f_{*}(t, x) \rightarrow f_{0}(t)$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$, and $u_{*}(t) = u(t, x, \varepsilon)$ is a generalized H_{p} -solution of (3.1) such that (3.3) $\partial_{t}^{j-1}u_{*}(0) \rightarrow \partial_{t}^{j-1}u_{0}(0)$ in $H_{p,x}$ $(j=1,\cdots,l)$.

Theorem 3. Let degree of $\{P_{\mu}(\xi, \varepsilon) - P_{\mu}(\xi, 0)\} = k \ (\mu = 0, \dots, l)$, and let $u = u_0(t)$ be an l times continuously $H_{p+k,x}$ -differentiable solution of (3.1) for $\varepsilon = 0$ in $0 \leq t \leq T$. In order that (3.1) be H_p -stable for $\varepsilon \downarrow 0$ with respect to $u = u_0(t)$ in $0 \leq t \leq T$, it is necessary and sufficient that, there exist constants $\varepsilon_0 > 0$ and C such that

$$(3.4) \qquad \qquad \sup_{\xi\in \mathbb{Z}^m} |Y_j(t,\xi,\varepsilon)| \leq C \ for \ 0 \leq t \leq T, \ 0 < \varepsilon \leq \varepsilon_0,$$

and

whenever

(3.5)
$$\sup_{\varepsilon \in \mathbb{Z}^m} \int_0^T |P_l(\varepsilon)^{-1} Y_l(t, \xi, \varepsilon)| dt \leq C \text{ for } 0 < \varepsilon \leq \varepsilon_0,$$

where $y = Y_j(t, \xi, \varepsilon)$ are matricial solutions of (3.6) $\sum_{\mu=0}^{l} P_{\mu}(i\xi, \varepsilon) \left(\frac{d}{dt}\right)^{\mu} y = 0$ [Vol. 35,

No. 8] Singular Perturbation of Partial Differential Equations

with the initial conditions $\partial_t^{k-1} Y_j(0,\xi,\varepsilon) = \delta_{kj} 1$ $(k=1,\cdots,l)$.

Proof. Necessity of (3.4): Let $v = v_{*}(t)$ be the solution of (3.7) $L_{*}[v] = 0$ with the initial conditions $\partial_{t}^{j-1}v_{*}(0) = \partial_{t}^{j-1}u_{*}(0) - \partial_{t}^{j-1}u_{0}(0)$ $(j=1,\cdots,l)$.

with the initial conditions $o_t^{j-1}v_t(0) = o_t^{j-1}u_t(0) - o_t^{j-1}u_0(0)$ $(j=1,\cdots, l)$. One sees easily, it is necessary that

(3.8) $v_{\iota}(t) \to 0$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$. Now assume that for any $\varepsilon_0 > 0$, there did not exist such C that (3.4) holds. Then, for a certain j, there are sequences $\{\varepsilon_{\nu}\}$ and $\{t_{\nu}\}$ such that, $\varepsilon_{\nu} \downarrow 0$ as $\nu \to \infty$, $0 \leq t_{\nu} \leq T$, and a sequence of spheres $\{S_{\nu}\}$, $S_{\nu} = \{\xi; |\xi - \xi^{(\nu)}| < \delta_{\nu}\}$, such that

(3.9)
$$| Y_{j}(t_{\nu},\xi,\varepsilon_{\nu})| > \nu \quad \text{for } \xi \in S_{\nu}, \\ 2^{-1} < \sqrt{1+|\xi|^{2}}^{p} / \sqrt{1+|\xi^{(\nu)}|^{2}}^{p} < 2 \text{ for } \xi \in S_{\nu}.$$

We set

$$v_{\nu}(t, x) = rac{lpha_{
u}}{\sqrt{2\pi}^m} \int_{S_{
u}} e^{ix\cdot\xi} Y_j(t, \xi, \varepsilon_{
u}) d\xi,$$

with $\alpha_{\nu} = (\text{measure of } S_{\nu})^{-1} \sqrt{1+|\xi^{(\nu)}|^2}$. Then $v = v_{\nu}(t, x)$ is an H_{∞} -solution of (3.7) such that, by (3.9),

 $\|\partial_t^{j-1}v_{\nu}(0)\|_p \leq 2\nu^{-1} \rightarrow 0, \quad \partial_t^{k-1}v_{\nu}(0) = 0 \text{ for } k \neq j,$ and $\|v_{\nu}(t_{\nu})\|_p \geq 1/2$. This contradicts with (3.8). The condition (3.4) is thus necessary.

Necessity of (3.5): If (3.5) did not hold for any $\varepsilon_0 > 0$ and C, then there would exist a sequence $\{\varepsilon_{\nu}\}, \ \varepsilon_{\nu} \downarrow 0$ and a sequence of spheres $\{S_{\nu}\} \subset E^m$ such that

(3.10)
$$\int_{0}^{T} |P_{\iota}(\varepsilon_{\nu})^{-1}Y_{\iota}(T-\tau,\xi,\varepsilon_{\nu})| d\tau > \nu \quad \text{for } \xi \in S_{\nu}.$$

Let $u = u_{\nu}(t) = u_{\nu}(t, x)$ be generalized H_p -solution of (3.1) with the initial conditions $\partial_t^{j-1}u_{\nu}(0) = \partial_t^{j-1}u_0(0)$ $(j=1,\cdots,l)$. Then $v = v_{\nu}(t) = u_{\nu}(t) - u_0(t)$ is a generalized H_p -solution of

 $L_{\varepsilon_n} \lceil u \rceil = g_{\nu}(t)$

(3.11)

with $g_{\nu}(t) = g_{\nu}(t, x) = \{L_{\epsilon_{\nu}} - L_0\} \begin{bmatrix} u_0 \end{bmatrix} + f_{\epsilon_{\nu}}(t) - f_0(t)$, with the initial conditions $\partial_t^{j-1} v_{\nu}(0) = 0$ $(j=1,\cdots,l)$. By Theorem 2, since $g_{\nu}(t)$ is $H_{p,x}$ -continuous and (3.4) holds,

$$(3.12) \quad v_{\nu}(t,x) = \frac{1}{\sqrt{2\pi}^{m}} \int_{E^{m}} e^{ix\cdot\xi} \left\{ \int_{0}^{t} P_{l}(\xi)^{-1} Y_{l}(t-\tau,\xi,\varepsilon_{\nu}) \hat{g}_{\nu}(\tau,\xi) d\tau \right\} d\xi,$$

where $\hat{g}_{\nu}(t, \xi)$ denotes the Fourier transform of $g_{\nu}(t, x)$ as the function of x. Since $\{L_{*\nu}-L_0\}[u_0]$ is $H_{p,x}$ -continuous and

 $\{L_{i_{\nu}}-L_{0}\}[u_{0}] \rightarrow 0$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$,

 $g_{\nu}(t)$ may be any $H_{p,x}$ -continuous function such that $g_{\nu}(t) \rightarrow 0$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$.

Now by (3.10) we can find a continuous function $\psi_{\nu}(t,\xi)$ in $0 \leq t \leq T$, $\xi \in S_{\nu}$, such that

M. NAGUMO

$$(3.13) \quad \left\{ \begin{array}{c} \mid \psi_{\nu}(t,\,\xi) \mid \leq 1, \\ \mid \int_{0}^{T} P_{l}(\varepsilon_{\nu})^{-1} Y_{l}(T-\tau,\,\xi,\,\varepsilon_{\nu}) \psi_{\nu}(\tau,\,\xi) \, d\tau \mid > \nu \ \text{ for } \xi \in S_{\nu}. \end{array} \right.$$

We set

(3.14)
$$g_{\nu}(t,x) = \frac{\nu^{-1} |S_{\nu}|^{-1/2}}{\sqrt{2\pi^{m}}} \int_{S_{\nu}} e^{ix\cdot\xi} \psi_{\nu}(t,\xi) \sqrt{1+|\xi|^2} e^{-p} d\xi^{8/2} d\xi^{$$

hence

$$\hat{g}_{\nu}(t,\xi) = \left\{ egin{array}{ll}
u^{-1} \, | \, S_{
u} \, |^{-1/2} \, \sqrt{1 + | \, \xi \, |^2}^{-p} \Psi_{
u}(t,\xi) & ext{for } \xi \in S_{
u}, \ 0 & ext{for } \xi \in S_{
u}. \end{array}
ight.$$

Then $||g_{\nu}(t, x)||_{p} \leq \nu^{-1} \rightarrow 0$. But by (3.12), (3.13) and (3.14) $||v_{\nu}(T)||_{p} \geq 1$.

This contradicts with $v_{\nu}(t) = u_{\epsilon_{\nu}}(t) - u_0(t) \rightarrow 0$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$. The condition (3.5) is thus necessary.

Sufficiency of the conditions. Put $v_{\epsilon}(t) = u_{\epsilon}(t) - u_{0}(t)$, then $v_{\epsilon}(t)$ is given by

$$(3.15) \qquad v_{\epsilon}(t,x) = \sum_{j=1}^{l} \frac{1}{\sqrt{2\pi}^{m}} \int_{E^{m}} e^{ix\cdot\xi} Y_{j}(t,\xi,\varepsilon) \partial_{t}^{j-1} \{\hat{u}_{\epsilon}(0,\xi) - \hat{u}_{0}(0,\xi)\} d\xi + \frac{1}{\sqrt{2\pi}^{m}} \int_{E^{m}} e^{ix\cdot\xi} \Big\{ \int_{0}^{t} P_{l}(\varepsilon)^{-1} Y_{l}(t-\tau,\xi,\varepsilon) \hat{g}_{\epsilon}(\tau,\xi) d\tau \Big\} d\xi,$$

where $g_{\iota}(t, x) = L_{\iota}[u_0] - L_0[u_0] + f_{\iota}(t) - f_0(t)$ and $\hat{g}_{\iota}(t, \xi) = \mathfrak{F}_x[g_{\iota}(t, x)](\xi)$. From (3.4), (3.5) and (3.15) we can easily derive

$$||v_{*}(t,x)||_{p} \rightarrow 0$$
 uniformly for $0 \leq t \leq T$,

 $\begin{array}{ll} \text{if} & || \, \partial_{t}^{j-1} \{ u_{\epsilon}(0) - u_{0}(0) \} \, ||_{p} \to 0 \quad \text{and} \quad || \, f_{\epsilon}(t) - f_{0}(t) \, ||_{p} \to 0 \quad \text{uniformly} \quad \text{for} \\ 0 \leq t \leq T. \quad \text{Q.E.D.} \end{array}$

454