100. Finite-to-one Closed Mappings and Dimension. II

By Keiô NAGAMI

Department of Mathematics, Ehime University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

In this note¹⁾ our concern is devoted to mappings defined on spaces of positive dimension, though in the previous note [3] we were mainly concerned with mappings defined on 0-dimensional spaces. Theorem 1 below gives an answer for the problem concerning dimension-raising mappings between non-separable metric spaces, which was raised by W. Hurewicz [1] and solved for the case of separable metric spaces by J. H. Roberts [4]. All notations and terminologies used here are the same as in the previous note [3]. A space R has dimension $\leq \aleph_0$, dim $R \leq \aleph_0$, if R is the countable sum of subspaces R_i with dim $R_i \leq 0$.

Let R and S be topological spaces. Let $\mathfrak{F} = \{F_{\alpha}; \alpha \in A\}$ and $\mathfrak{H} = \{H_{\alpha}; \alpha \in A\}$ be respectively locally finite closed coverings of R and S. Let f be a mapping of R onto S. Let r be a positive integer. If the following conditions are satisfied, (R, \mathfrak{F}, f) is called *the cut of order* r of (S, \mathfrak{F}) .

(1) For every $\alpha \in A$, $f | F_{\alpha}$ is a homeomorphism of F_{α} onto H_{α} .

(2) If order (y, \mathfrak{H}) , the number of closed sets of \mathfrak{H} which contain $y \in S$, is greater than $r, f^{-1}(y)$ consists of one and only one point.

If r_1 =order (y, \mathfrak{H}) is not greater than r, $f^{-1}(y)$ consists of exactly r_1 points.

R is called the cut-space of order *r* obtained from (S, \mathfrak{H}) . \mathfrak{F} is called the derived covering of order *r* and *f* the cut-mapping. We can prove that there exists the cut of order *r* of (S, \mathfrak{H}) for any (S, \mathfrak{H}) and *r* and that the cut is essentially unique.

Let R_0 be a metric space with dim $R_0=n$, $0 < n < \infty$. Let m be an arbitrary integer with $0 \le m < n$. We shall now construct a metric space T with dim T=m and a closed mapping π_0 of T onto R_0 such that for every point p of R_0 $\pi_0^{-1}(p)$ consists of at most n-m+1 points.

By [2] or [3] there exist $\lim A_i = \lim \{A_i, f_{i+1,i}\}$, where A_i are discrete spaces of indices, and a sequence of locally finite closed coverings $\mathfrak{F}_{0i} = \{F(0, \alpha_i); \alpha_i \in A_i\}, i=1, 2, \cdots$, which satisfy the following conditions.

(1) The diameter of each set of $\mathfrak{F}_{0i} < 1/i$.

(2) The order of every $\mathfrak{F}_{0i} \leq n+1$.

¹⁾ The detail of the content of the present note will be published in another place.

K. NAGAMI

For any *i* and any $\alpha_i \in A_i$,²⁾ (3) $F(0, \alpha_i) = \bigcup \{F(0, \alpha_{i+1}); \alpha_{i+1} \in A_{i+1}, f_{i+1, i}(\alpha_{i+1}) = \alpha_i\}.$ Let $(S_{i1}, \mathfrak{H}_{iii} = \{H(i, i, \alpha_i); \alpha_i \in A_i\}, h_{i1})$ be the cut of order r = n - m+1 of (R_0, \mathfrak{F}_{0i}) . Let $H(i, i, \alpha_i) = \bigcup \{H(i, i, \alpha_i); f_{i,i}(\alpha_i) = \alpha_i\} \quad \text{if } j < i.$ and $H(i, i, \alpha_j) = h_{i1}^{-1}(F(0, \alpha_j)) \cap H(i, i, f_{ji}(\alpha_j))$ if j > i, and then $\mathfrak{H}_{iij} = \{H(i, i, \alpha_j); \alpha_j \in A_j\}, j=1, 2, \cdots$, is a sequence of locally finite closed coverings of S_{i1} which satisfies the following conditions. (1) For any point p of S_{i1} and any neighborhood U of p, there exists \mathfrak{H}_{iij} such that $S(p, \mathfrak{H}_{iij}) = \bigcup \{H(i, i, \alpha_j); p \in H(i, i, \alpha_j)\} \subset U.$ (2) For any j and any $\alpha_i \in A_i$, $H(i, i, \alpha_{j}) = \bigcup \{H(i, i, \alpha_{j+1}); f_{j+1, j}(\alpha_{j+1}) = \alpha_{j}\}.$ We can construct by a successive process the cuts $(S_{ij}, \mathfrak{H}_{i, i-j+1, i-j+1}, h_{ij}), j=2, \cdots, i,$ and a sequence of locally finite closed coverings $\mathfrak{H}_{i,i-j+1,k} = \{H(i, i-j+1, \alpha_k); \alpha_k \in A_k\}, k=1, 2, \cdots,$ of S_{ij} , $j=2,\cdots,i$, which satisfy the following conditions. (1) $(S_{ij}, \mathfrak{H}_{i, i-j+1, i-j+1}, h_{ij})$ is the cut of order r of $(S_{i, j-1}, \mathfrak{H}_{i, i-j+2, i-j+1})$. (2) $H(i, i-j+1, \alpha_k) = \bigcup \{H(i, i-j+1, \alpha_{i-j+1}); f_{i-j+1,k}(\alpha_{i-j+1}) = \alpha_k\}$ if k > i-j+1, and $H(i, i-j+1, \alpha_k) = h_{ij}^{-1}(H(i, i-j+2, \alpha_k)) \cap H(i, i-j+1, f_{k+1-j+1}(\alpha_k)) \quad \text{if}$ k < i - j + 1.Then the following conditions are satisfied. (1) For any point p of S_{ij} and any neighborhood U of p, there exists $\mathfrak{H}_{i,i-j+1,k}$ such that $S(p,\mathfrak{H}_{i,i-j+1,k}) \subset U$. (2) For any k and any $\alpha_k \in A_k$, $H(i, i-j+1, \alpha_k) = \bigcup \{H(i, i-j+1, \alpha_{k+1}); f_{k+1, k}(\alpha_{k+1}) = \alpha_k \}.$ Let $R_i = S_{ii}$, $F(i, \alpha_j) = H(i, 1, \alpha_j)$ and $\mathfrak{V}_{ij} = \{F(i, \alpha_j); \alpha_j \in A_j\}$. Then there is a mapping $g_{i+1,i}$ of R_{i+1} onto R_i such that $g_{i+1,i}|F(i+1, i)|$ α_{i+1} is a homeomorphism of $F(i+1, \alpha_{i+1})$ onto $F(i, \alpha_{i+1})$ for every $\alpha_{i+1} \in A_{i+1}$, $i=0, 1, 2, \cdots$. Let $T=\lim \{R_i, g_{i+1,i}\}$ and π_i be a natural

We can prove that the projection π_0 of T onto R_0 is a closed mapping such that for every point y of R_0 the inverse image $f^{-1}(y)$ consists of at most r=n-m+1 points. Moreover we can prove that Tthus constructed is a metric space with dim T=m.

Theorem 1. Let R_0 be a metric space. Then dim $R_0 \le n(<\infty)$ if and only if R_0 is the image of a metric space T with dim $T \le m(\le n)$ under a closed mapping π_0 such that $\pi_0^{-1}(y)$ consists of at most n-m+1 points for every $y \in R_0$.

Theorem 2. Let R be an inverse limiting space of a sequence of

projection of T onto R_i , $i=0, 1, 2, \cdots$

438

²⁾ In the following α_j always indicates the element of A_j .

metric spaces R_i , $i=1, 2, \cdots$. Then we have

dim
$$R \leq \lim \inf \dim R_i$$
.

Theorem 3. Let R be an inverse limiting space of a system of compact Hausdorff spaces R_{α} , $\alpha \in A$. Then we have

 $\dim R \leq \sup \dim R_{\alpha}.$

Theorem 4.3 Let R and S be metric spaces and f a closed mapping of R onto S. If the boundary of $f^{-1}(y)$ consists of exactly $k(<\infty)$ points for every point $y \in S$, then we have dim $S \leq \dim R$. If moreover dim $S < \dim R < \infty$, there exists $y \in S$ such that dim $f^{-1}(y) = \dim R$.

Theorem 5. Let R and S be metric spaces and f a closed mapping of R onto S. If the boundary of $f^{-1}(y)$ is finite for every point $y \in S$ and dim $R \leq \aleph_0$, then we have dim $S \leq \aleph_0$.

Theorem 6. Let R and S be paracompact Hausdorff spaces and f an open mapping of R onto S. If $f^{-1}(y)$ is finite for every point $y \in S$, then we have dim $R = \dim S$. If moreover R and S are hereditarily paracompact, we have $\operatorname{Ind} R = \operatorname{Ind} S$, where $\operatorname{Ind} R$ is the large inductive dimension of R defined by means of the separation of closed sets.

References

- W. Hurewicz: Ueber stetige Bilder von Punktmengen, Proc. Amsterdam Academy, 30 (1927).
- [2] K. Morita: A condition for the metrizability of topological spaces and for ndimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, sect. A, 5, 33-36 (1955).
- [3] K. Nagami: Finite-to-one closed mappings and dimension. I, Proc. Japan Acad., 34, 503-506 (1958).
- [4] J. H. Roberts: A theorem on dimension, Duke Math. J., 8, 565-574 (1941).
- [5] J. Suzuki: Note on a theorem for dimension, Proc. Japan Acad., 35, 201-202 (1959).