126. On Equivalence of Modular Function Spaces

By Jyun ISHII

Mathematical Department, Hokkaidô University, Sapporo (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1959)

Let Ω be an abstract space and μ be a totally additive measure defined on a totally additive set class \mathfrak{B} of subsets of Ω satisfying $\bigcup_{\mu(E)<\infty} E=\Omega$.

Let $\Phi(\xi, \omega)$ $(\xi \ge 0, \omega \in \Omega)$ be a function satisfying the following conditions:

1) $0 \leq \Phi(\xi, \omega) \leq \infty$ for all $\xi \geq 0, \ \omega \in \Omega$;

2) $\Phi(\xi, \omega)$ is a measurable function on Ω for all $\xi \geq 0$;

3) $\Phi(\xi, \omega)$ is a non-decreasing convex functions of $\xi \ge 0$ for all $\omega \in \Omega$;

4) $\Phi(0, \omega) = 0$ for all $\omega \in \Omega$;

5) $\Phi(\alpha - 0, \omega) = \Phi(\alpha, \omega)$ for all $\omega \in \Omega$;

6) $\Phi(\xi, \omega) \to \infty$ as $\xi \to \infty$ for all $\omega \in \Omega$;

7) for any $\omega \in \Omega$, there exists $\alpha_{\omega} > 0$ such that $\Phi(\alpha_{\omega}, \omega) < \infty$.

For any measurable function $x(\omega)$ ($\omega \in \Omega$), $\Phi(|x(\omega)|, \omega)$ is also measurable. We shall denote by $L_{\varphi}(\Omega)$ the class of all measurable functions $x(\omega)$ ($\omega \in \Omega$) such that, for some $\alpha = \alpha_x > 0$,

$$\int_{a} \Phi(\alpha | x(\omega)|, \omega) d\mu(\omega) < \infty.$$

We write $x \ge y$ $(x, y \in L_{\phi})$, if $x(\omega) \ge y(\omega)$ for a.e.²⁾ on Ω , then L_{ϕ} is a universally continuous semi-ordered linear space.

If we define a functional

$$m_{\varphi}(x) = \int_{\varphi} \Phi(|x(\omega)|, \omega) d\mu,$$

 m_{φ} satisfies all the modular conditions and furthermore m_{φ} is monotone complete. Such a space L_{φ} with m_{φ} is said to be a modular function space.³⁾

If $\overline{\Phi}(\eta, \omega)$ $(\eta \ge 0, \omega \in \Omega)$ is, for every fixed $\omega \in \Omega$, the complementary function of Φ in the sense of H. W. Young, $\overline{\Phi}$ satisfies all the corresponding properties from 1) to 7) on Φ , and so, we have also a

¹⁾ For the integration, refer, for instance, H. Nakano [4].

²⁾ Here "a.e. (almost everywhere)" means always that "except on some $A \in \mathfrak{B}$ which $\mu(E \cap A) = 0$ for all $\mu(E) < \infty$ ".

³⁾ Modulared function spaces were defined and discussed in H. Nakano [2, Appendices I, II]. For all other definitions and notations used in this note, see the same book, too.

modular function space $L_{\overline{\phi}}$ with $m_{\overline{\phi}}$, which is isometric to the conjugate modular space of L_{ϕ} with m_{ϕ} .

For two functions Φ and Ψ on Ω satisfying above the conditions, we say that L_{ϕ} is equivalent to L_{π} , if $L_{\phi} = L_{\pi}$.

In this note, we find a necessary and sufficient condition in order that a modular function space is equivalent to the other. Immediate consequence of the fact gives the condition in order that a modular function space is equivalent to an Orlicz space.

Lemma.⁴⁾ Let R be an abstract modular space with two modulars m_1 and m_2 , and m_1 be monotone complete.

Proof. (I). (a) If (a) is not valid, there exists a sequence $0 \leq x_{\nu} \in R \ (\nu=1, 2, \cdots)$ such that $m_1(x_{\nu}) \leq \frac{1}{2^{\nu}}, \ m_2\left(\frac{1}{\nu}x_{\nu}\right) \geq \nu$. Let $y_n = \bigcup_{\nu=1}^n x_{\nu}$ $(n=1, 2, \cdots)$, then $0 \leq y_n \uparrow_{n=1}^\infty$ and $m_1(y_n) \leq 1 \ (n=1, 2, \cdots)$. Therefore there exists $y_0 = \bigcup_{n=1}^\infty y_n$, because m_1 is monotone complete. On the other hand, for $\nu=1, 2, \cdots, m_2\left(\frac{1}{\nu}y_0\right) \geq m_2\left(\frac{1}{\nu}y_n\right) \geq n$ for $n \geq \nu$,

which contradicts that m_2 is a modular.

(b) For any x with $\frac{\varepsilon}{2} \leq m_1(x) < \varepsilon$, we have $m_2(kx) \leq \gamma \leq \frac{2\gamma}{\varepsilon} m_1(x)$ by (a).

(II) Let ε be the same as in (I). If $m_1(x) \ge \varepsilon$, there exists an integer *n* such that $\varepsilon n \le m_1(x) < \varepsilon(n+1)$. We can decompose *x* into an orthogonal sequence x_{ν} ($\nu = 1, 2, \dots, n+1$) such that

$$x = \sum_{\nu=1}^{n+1} \oplus x_{\nu}$$
 and $m_1(x_{\nu}) < \varepsilon$,

because R is non-atomic. Therefore

$$m_2(kx) = \sum_{\nu=1}^{n+1} m_2(kx_
u) < 2n\gamma \leq rac{2\gamma}{arepsilon} m_1(x)$$

by (a) in (I).

First, we consider only the case that μ is non-atomic.

Theorem 1.5 $L_{\mathfrak{g}}(\Omega) \subseteq L_{\mathfrak{F}}(\Omega)$ if and only if there exist k, K > 0and $c(\omega) \in L_1(\Omega)$ such that

(*) $\Psi(k\xi, \omega) \leq K \Phi(\xi, \omega) + c(\omega)$ for all $\xi \geq 0$ and a.e. on Ω .

⁴⁾ The proof of this lemma has relations to results of [1] and [6].

⁵⁾ This theorem is a generalization of Theorem 1a in [5, Chap. II, §1].

Proof. It is clear that (*) implies $L_{\varphi} \subseteq L_{\pi}$. We prove the converse. Let $0 \leq \alpha_{\nu}$ ($\nu = 1, 2, \cdots$) be the system of all the positive rational numbers. For any $E \in \mathfrak{B}$ with $\mu(E) < \infty$ and for $\varepsilon, k, K > 0$ in (II), we put, for $\nu = 1, 2, \cdots$

(#)
$$E_{\nu} = \{\omega; \Psi(k\alpha_{\nu}, \omega) > K \Phi(\alpha_{\nu}, \omega)\} \subset E$$

and

$$x_{\nu}(\omega) = \alpha_{\nu} \chi_{E_{\nu}}(\omega)$$

respectively, where $\chi_{E_{\nu}}$ is the characteristic function of E_{ν} . We need to consider only on such ν that $\mu(E_{\nu}) \neq 0$ in the following. Since $\Phi(\alpha_{\nu}, \omega) < \infty$ on E_{ν} by (\sharp), we have

$$E_{\nu,n} = \{\omega; \Phi(\alpha_{\nu}, \omega) < n\} \subseteq E_{\nu} \uparrow_{n=1}^{\infty} E_{\nu}$$

For all $n \ge n_0$ where n_0 is sufficiently large such that $\mu(E_{\nu,n_0}) \neq 0$, we have $\alpha_{\nu}\chi_{E_{\nu,n}} \in L_{\phi}$ and $m_{\phi}(\alpha_{\nu}\chi_{E_{\nu,n}}) < \varepsilon$, if otherwise, the fact

$$egin{aligned} &m_{ au}(klpha_{
u}\chi_{E_{
u,n}}) = \int\limits_{E_{
u,n}} \psi(klpha_{
u},\omega)d\mu \ &> K \int\limits_{E_{
u,n}} \varPhi(lpha_{
u},\omega)d\mu = K m_{arphi}(lpha_{
u}\chi_{E_{
u,n}}) \end{aligned}$$

contradicts (II).

Therefore, considering $\alpha_{\nu}\chi_{E_{\nu,n}}\uparrow_{n=1}^{\infty}$ and $m_{\phi}(\alpha_{\nu}\chi_{E_{\nu,n}}) < \varepsilon$, we have $x_{\nu} = \bigcup_{n=1}^{\infty} \alpha_{\nu}\chi_{E_{\nu,n}} \in L_{\phi}$ and $m(x_{\nu}) < \varepsilon$ likewise by (#) and (II). Here, putting $y_{n} = \bigcup_{\nu=1}^{n} x_{\nu}$, we have a sequence of step functions $0 \leq y_{n}\uparrow_{n=1}^{\infty}$ where $y_{n} = \sum_{\mu=1}^{n} \alpha_{\nu\mu}\chi_{E^{(\mu)}}$ for $\alpha_{\nu_{1}} < \alpha_{\nu_{2}} < \cdots < \alpha_{\nu_{n}}$ with $\nu_{\mu} = \mu$ ($\mu = 1, 2, \cdots, n$) and for the system of disjoint sets $E^{(\mu)} = E_{\nu\mu} - \left(\bigcup_{\mu=1}^{\mu-1} E_{\nu\mu}\right) \subset E_{\nu\mu}$. Since, for all $n = 1, 2, \cdots$

$$\begin{split} m_{\mathfrak{F}}(ky_{n}) &= \int_{\Omega} \mathcal{\Psi}\left(k\sum_{\rho=1}^{n} \alpha_{\nu_{\rho}}\chi_{E^{(\rho)}}(\omega), \omega\right) d\mu \\ &= \sum_{\mu=1}^{n} \int_{E^{(\rho)}} \psi(k\alpha_{\nu_{\rho}}, \omega) d\mu > \sum_{\rho=1}^{n} \int_{E^{(\rho)}} k \varPhi(\alpha_{\nu_{\rho}}, \omega) d\mu \\ &= K \int_{\Omega} \varPhi\left(\sum_{\rho=1}^{n} \alpha_{\nu_{\mu}}\chi_{E^{(\rho)}}(\omega), \omega\right) d\mu = K m_{\varPhi}(y_{n}), \end{split}$$

we have $m_{\varPhi}(y_n) < \varepsilon$ by (a) and (II).

Therefore $y_E = \bigcup_{n=1}^{\infty} y_n \in L_{\phi}$ because m_{ϕ} is monotone complete, and furthermore $m_{\phi}(y_E) \leq \varepsilon$. Namely $y_E \in L_F$ by the hypothesis and $m_F(ky_E) < \gamma$ by (a) in (I).

Now, we have, for all $n=1, 2, \cdots$

$$\Psi(klpha_n,\omega) { \leq } \begin{cases} \Psi(ky_E(\omega),\omega) & ext{ for all } \omega \in E_n \ K \varPhi(lpha_n,\omega) & ext{ for all } \omega \in E - E_n \frown E. \end{cases}$$

The system $\{y_E\}$ in which every y_E is determined depending on $E \in \mathfrak{B}$

with $\mu(E) < \infty$ by the above-stated way constitutes a directed system $0 \leq y_E \uparrow_{\mu(E) < \infty}$, because for any two elements $y_E, y_F \in \{y_E\}$ we have $\mu(E \bigcup F) < \infty$ and $y_E \bigcup y_F = y_{E \cup F}$. Since $m(y_E) \leq \varepsilon$ for any $\mu(E) < \infty$, and $E \uparrow_{\mu(E) < \infty} \Omega$ there exists $y_0 = \bigcup_{\mu(E) < \infty} y_E \in L_{\varphi}$ with $m_{\varphi}(y_0) \leq \varepsilon$ which is defined for all on Ω , and so, $y_0 \in L_T$ and $m_T(ky_0) < \gamma$ by the same reason stated above.

Thus, we have for all positive real numbers $\xi \geq 0$

 $\Psi(k\xi,\omega) \leq K \Phi(\xi,\omega) + \Psi(ky_0(\omega),\omega)$ for a.e. on Ω

by 5). $\Psi(ky_0(\omega), \omega)$ is no other than $c(\omega)$ in (*).

Corollary 1. L_{ϕ} is equivalent to L_{π} if and only if there exist $k_1, k_2, K_1, K_2 > 0$ and $c \in L_1$ such that

 $|K_1 arPhi(k_1 \xi, \omega) - K_2 arPhi(k_2 \xi, \omega)| \leq c(\omega)$

for all $\xi \geq 0$ and a.e. on Ω .

Corollary 2. (1) Let $L_{M(\xi)}(\Omega)$ be an Orlicz space defined on Ω by a function $M(\xi)$ ($\xi \geq 0$).

 $L_{\varphi} \subseteq L_{M}$ if and only if there exist k, K > 0 and $c(\omega) \in L_{1}(\Omega)$ such that

$$\Phi(k\xi,\omega) \leq KM(\xi) + c(\omega)$$

for all $\xi \geq 0$ and a.e. on Ω .

(2) Let $L_{p(\omega)}(\Omega)$ be a modular function space which is of unique spectra⁶⁾ defined on Ω by a measurable function $1 \leq p(\omega) \leq \infty$ ($\omega \in \Omega$).

 $L_{\varphi} \subseteq L_{p(\omega)}$ if and only if there exist k, K > 0 and $c \in L_1$ such that $\Phi(k\xi, \omega) \leq K\xi^{p(\omega)} + c(\omega)$

for all $\xi \geq 0$ and a.e. on Ω .

Next, we consider the case that μ is atomic.

If μ is atomic, we can assume $\mu(\omega)=1$ for all $\omega \in \Omega$ without loss of generality. And $m_{\phi}(x) = \sum_{\omega \in \Omega} \Phi(|x(\omega)|, \omega)$ for all $x \in L_{\phi}$.

Theorem 2. $L_{\varphi} \subseteq L_{\mathbb{F}}$ if and only if there exist $k, K > 0, c(\omega) \ge 0$ $(\omega \in \Omega)$ with $\sum_{\omega \in \Omega} c(\omega) < \infty$ and ξ_{ω} ($\omega \in \Omega$) which is a system of numbers satisfying, for any $x \in L_{\varphi}$ with $m_{\varphi}(x) < \infty$, $|x(\omega)| \le \xi_{\omega}$ except on some finite subset of Ω , such that (**) $\Psi(k\xi, \omega) \le K\Phi(\xi, \omega) + c(\omega)$

(**) $\Psi(k\xi, \omega) \leq K \Phi(\xi, \eta)$ for all $\xi \leq \xi_{\omega}$ and $\omega \in \Omega$.

Proof. If (**) is valid, for any $x \in L_{\phi}$, since there exists $\alpha > 0$

6) These spaces were defined and discussed precisely in H. Nakano [3, §89], that is,

with the modular

$$m(x) = \int_{\Omega} \frac{1}{p(\omega)} |x(\omega)|^{p(\omega)} d\mu$$

for a measurable function $1 \leq p(\omega) \leq \infty$ on Ω ,

with $m_{\varphi}(\alpha x) < \infty$, we can find a finite subset $F \subset \Omega$ such that $\alpha |x(\omega)| \leq \xi_{\omega}$ for all $\omega \in F$ and

$$\Psi(k\alpha | x(\omega) |, \omega) \leq K \Phi(\alpha | x(\omega) |, \omega) + c(\omega)$$

for all $\omega \in F$.

Furthermore, there exists k' with $0 < k' \leq \alpha k$ such that $\Psi(k'|x(\omega)|, \omega) < \infty$ for all $\omega \in F$, because $0 \leq |x(\omega)| < \infty$ and 7) on Ψ . Thus, we have

$$\begin{split} \sum_{\omega \in \mathcal{Q}} \Psi(k' \mid x(\omega) \mid, \omega) \\ & \leq \sum_{\alpha \mid x(\omega) \mid \leq \xi_{\omega}} K \varPhi(\alpha \mid x(\omega) \mid, \omega) + \sum_{\alpha \mid x(\omega) \mid \leq \xi_{\omega}} c(\omega) + \sum_{\alpha \mid x(\omega) \mid > \xi_{\omega}} \Psi(k' \mid x(\omega) \mid, \omega) \\ & \leq K \sum_{\omega \in \mathcal{Q}} \varPhi(\alpha \mid x(\omega) \mid, \omega) + \sum_{\omega \in \mathcal{Q}} c(\omega) + \sum_{\omega \in \mathcal{U}} \Psi(k' \mid x(\omega) \mid, \omega) < \infty. \end{split}$$

Namely $x \in L_{\varphi}$.

Conversely, if $L_{\phi} \subseteq L_{\overline{r}}$, then (**) is proved also by the analogous way to the case which μ is non-atomic as the following.

Let $0 \leq \alpha_{\nu}$ ($\nu = 1, 2, \cdots$) be the system of all the positive rational numbers and let ε' and ε in (I) be $2\varepsilon' < \varepsilon$. We put, for all $\omega \in \Omega$,

$$\alpha_{\omega} = \sup \{\alpha; \alpha > 0, \ \Psi(k\alpha, \omega) > K \Phi(\alpha, \omega), \ \Phi(\alpha, \omega) < \varepsilon'\}$$

and

$$x_0(\omega) = \bigcup_{\omega' \in \mathcal{Q}} \alpha_{\omega'} \chi_{\omega'}(\omega) = \bigcup_{F \subset \mathcal{Q}} \bigcup_{\omega' \in F} \alpha_{\omega'} \chi_{\omega'}(\omega)$$

where every $\chi_{\omega'}$ is the characteristic function of $\{\omega'\}$ and F is a finite subset of Ω , respectively.

Then, because, for any two elements $\omega_1, \omega_2 \in \Omega$,

$$m_{\varphi}(\alpha_{\omega_1}\chi_{\omega_1} \bigcup \alpha_{\omega_2}\chi_{\omega_2}) = \Phi(\alpha_{\omega_1}, \omega_1) + \Phi(\alpha_{\omega_2}, \omega_2) < 2\varepsilon' < \varepsilon$$

and

$$m_{\overline{v}}(k\alpha_{\omega_{1}}\chi_{\omega_{1}}\bigcup\alpha_{\omega_{2}}\chi_{\omega_{2}}) > Km_{\phi}(\alpha_{\omega_{1}}\chi_{\omega_{1}}\bigcup\alpha_{\omega_{2}}\chi_{\omega_{2}})$$

we have $m_{\varphi}(\bigcup_{\omega \in F} \alpha_{\omega} \chi_{\omega}) < \varepsilon'$ by (1).

Since $\bigcup_{\omega \in F} \alpha_{\omega} \chi_{\omega} \uparrow_{F \subset \mathcal{Q}} x_0$ and m_{φ} is monotone complete, we have $x_0 \in L_{\varphi}$ and $m_{\varphi}(x_0) \leq \varepsilon'$. Namely $x_0 \in L_{\mathbb{F}}$ by the hypothesis and $m_{\mathbb{F}}(kx_0) \leq \gamma$ by (a) in (I).

On the other hand, putting

$$\xi_{\omega} = \sup_{\varphi(\xi,\omega) \leq \varepsilon} \xi,$$

then for any $x \in L_{\varphi}$ with $m_{\varphi}(x) = \sum_{\omega \in Q} \Phi(|x(\omega)|, \omega) < \infty$ we can find a finite subset $F_x \in \Omega$ such that $\Phi(|x(\omega)|, \omega) \leq \varepsilon$ for all $\omega \in F_x$. Namely $|x(\omega)| \leq \xi_{\varphi}$ for all $\omega \in F_x$.

Thus, we have, for all $\omega \in \Omega$

$$onumber \Phi(k\xi,\omega) \leq \left\{ egin{array}{ll} \Psi(kx_0(\omega),\omega) & ext{ for all } 0 \leq \xi < lpha_\omega \ K \varPhi(\xi,\omega) & ext{ for all } lpha_\omega \leq \xi \leq \xi_\omega \end{array}
ight.$$

by (b) in (I). Therefore (**) is proved by putting

$$c(\omega) = \Psi(kx_0(\omega), \omega).$$

Similar conditions to the corollaries to Theorem 1 on the case that

No. 9]

 μ is non-atomic hold also in this case.

Finally, the author wishes to express his hearty gratitude to Professor Hidegorô Nakano for his guidance and frequent encouragement.

References

- I. Amemiya: A generalization of the theorem of Orlicz and Birmbaum, Jour. Fac. Sci. Hokkaidô Univ., ser. 1, 12, no. 2 (1956).
- [2] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo (1950).
- [3] ----: Topology and Linear Topological Spaces, Tokyo (1951).
- [4] ----: Measure Theory (in Jap.), 3, Tokyo (1950).
- [5] W. Orlicz and Z. Birnbaum: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3 (1931).
- [6] T. Shimogaki: Note on Orlicz-Birnbaum-Amemiya's theorem, Proc. Japan Acad., 33, no. 6 (1957).