120. On the Thue-Siegel-Roth Theorem. II

By Saburô Uchiyama

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Z. Suetuna, M.J.A., Nov. 12, 1959)

- 1. This is a continuation of a previous note under the same title [6]. In the following we shall be concerned with some further results closely related to the Thue-Siegel-Roth theorem on the approximability of an algebraic number by other algebraic numbers.
- 2. The Thue-Siegel-Roth theorem [2] is an immediate consequence of the following

Theorem 1. Let α be any algebraic number other than zero and let K be an algebraic number field of finite degree over the rationals. If the inequality

$$|\alpha - \xi| < (H(\xi))^{-s} \tag{1}$$

is satisfied by infinitely many primitive numbers ξ in K, then

$$\kappa \leq \begin{cases} 2 & when K \text{ is real,} \\ 1 & when K \text{ is complex.} \end{cases}$$
 (2)

Moreover, when K is the rational number field or an imaginary quadratic number field, $H(\xi)$ in (1) can be replaced by $M(\xi)$ and the bound (2) for κ is best possible.

For the definition of $H(\xi)$ and $M(\xi)$ we refer to [6, §1]. The first part of Theorem 1 is easily seen from W. J. LeVeque's proof [2] of the Thue-Siegel-Roth theorem, and the second part is a well-known theorem due to K. F. Roth [5] when K is the rational number field, and Theorem 2 in [6] when K is an imaginary quadratic field. We note that it is impossible, in general, to replace $H(\xi)$ in (1) by $M(\xi)$.

3. Let K be an algebraic number field. A non-zero integer of K is said to be $prime\ in\ K$ if the principal ideal generated by the integer is a prime ideal in K. The associates of a number in K will be identified with the number itself.

Theorem 2. Let α be any non-zero algebraic number and let K be an imaginary quadratic number field. Let $u_1, \dots, u_s, v_1, \dots, v_t$ be a finite set of distinct integers of K, each being supposed to be prime in K. Let μ, ν , c be real numbers satisfying

$$0 \le \mu \le 1$$
, $0 \le \nu \le 1$, $c > 0$.

Let p, q be integers in K of the form

$$p = p^* u_1^{a_1} \cdots u_s^{a_s}, \quad q = q^* v_1^{b_1} \cdots v_t^{b_t},$$

where $a_1, \dots, a_s, b_1, \dots, b_t$ are non-negative rational integers and p^* , q^* are integers of K such that

¹⁾ A field is complex if it is not a real field,

$$0 < |p^*| \le c |p|^{\mu}, \quad 0 < |q^*| \le c |q|^{\nu}.$$

Then if $\kappa > \mu + \nu$, the inequality

$$0 < |\alpha - p/q| < |q|^{-\kappa}$$

has only a finite number of solutions in integers p, q in K of the form specified above.

This result, being a refinement of Theorem 3 stated in [6], constitutes an extension of a theorem of D. Ridout [4] to an imaginary quadratic field. Proof of Theorem 2 can be carried out at once if one refers to [4], on taking account of the argument developed in $[6, \S 3]$.

4. Again, let K be an algebraic number field. Let α be an algebraic number, not necessarily in the field K. We define

$$\|\alpha\|_{K} = \min |\alpha - \xi|,$$

where the minimum is taken over all integers ξ in K. Clearly $||\alpha||_K = 0$ if and only if α is an integer of K.

In virtue of Theorem 2 we can prove

Theorem 3. Let α be any non-zero algebraic number, let K be an imaginary quadratic number field and let u, v be integers of K such that |u| > |v| > 1. Suppose that the ideals (u) and (v) are relatively prime and every prime ideal containing (u)(v) in K is principal. Then for any real number $\varepsilon > 0$, arbitrarily small but fixed, the inequality

$$\left\| \alpha \left(\frac{u}{v} \right)^n \right\|_{\kappa} < e^{-\epsilon n}$$

is satisfied by at most a finite number of positive rational integers n.

This is a generalization of a theorem due to K. Mahler [3].

5. We may naturally extend the method of Roth [5] to obtain an analogue for non-archimedean valuations of the Thue-Siegel-Roth theorem.

Let L be an algebraic number field. Given a prime ideal \mathfrak{p} in L there exists a unique rational prime $p=p(\mathfrak{p})$ contained in \mathfrak{p} . We denote by $e=e(\mathfrak{p})$ the order of \mathfrak{p} . If α is a number in L, we define as usual

$$|\alpha|_{\mathfrak{p}} = \begin{cases} 0 & \text{for } \alpha = 0, \\ p^{\alpha/e} & \text{for } \alpha \neq 0, \end{cases}$$

where α is a rational integer such that the fractional ideal $\mathfrak{p}^{a}(\alpha)$ contains the factor \mathfrak{p} in neither numerator nor denominator.

Theorem 4. Let α be any algebraic number other than zero and let K be an algebraic number field of finite degree over the rationals. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_s$ be a finite set of prime ideals with distinct rational primes $p(\mathfrak{p}_1), \dots, p(\mathfrak{p}_s)$ in an arbitrary finite extension field L over $K(\alpha)$. Then for each $\kappa > 2$, the inequality

$$\int_{k-1}^{s} |\alpha - \xi|_{\mathfrak{p}_{k}} < (H(\xi))^{-s} \tag{3}$$

has only a finite number of solutions ξ in K.

We shall prove this theorem in some detail. First we re-formulate Theorem 4. Let \mathfrak{a} be an integral ideal in L. If ζ is a number belonging to L, there is a representation $(\zeta)=\mathfrak{b}/\mathfrak{c}$ with certain integral ideals $\mathfrak{b},\mathfrak{c}$ in L. We write

$$\zeta \equiv 0 \pmod{\mathfrak{a}}$$

if, in that representation of (ζ) , the ideal b is contained in a and the ideal c is prime to a.

Now we put for the sake of brevity

$$p_k = p(\mathfrak{p}_k), \quad e_k = e(\mathfrak{p}_k)$$
 $(k = 1, \dots, s)$

For a positive rational integer q we set

$$a_k = e_k \left[\kappa \mu_k \frac{\log q}{\log p_k} \right] \qquad (k = 1, \dots, s)$$

where μ_1, \dots, μ_s are any non-negative real numbers²⁾ such that $\mu_1 + \dots + \mu_s = 1$, and write

$$\mathfrak{a}(q;\kappa) = \prod_{k=1}^{s} \mathfrak{p}_{k}^{\alpha_{k}}.$$

The following theorem can be regarded as an improvement of a result of A. O. Gel'fond $[1, \S 3]$.

Theorem 5. Let α , K, L, $\mathfrak{p}_1, \dots, \mathfrak{p}_s$ be as in Theorem 4. Then for each $\kappa > 2$, the congruence

$$\alpha - \xi \equiv 0 \qquad (\text{mod } \mathfrak{a}(H(\xi); \kappa)) \qquad (4)$$

has only finitely many solutions ξ in K.

It is not difficult to see that Theorems 4 and 5 are mutually equivalent and, in Theorem 4, there is no loss in generality in supposing that α is an algebraic integer. Also, we may restrict ourselves to the solutions ξ of (3) and of (4) which are primitive numbers in K. Hence we have only to prove Theorem 5 for integral α , ξ 's being restricted to be primitive numbers in K. Further, we may suppose that none of $\mathfrak{p}_1, \dots, \mathfrak{p}_s$ contain the ideal (α) .

We suppose that Theorem 5 is false, so that for some $\kappa > 2$, there is an infinite set E of primitive numbers ξ in K satisfying the congruence (4). Let α be of degree n over the rationals. We choose a positive rational integer m so large that $m > 4nm^{1/2}$ and

$$\frac{2m}{m-4nm^{1/2}}<\kappa,$$

which is possible since $\kappa > 2$. Next we choose a sufficiently small positive number δ satisfying the conditions (29) and (30) of [5]. We define λ, γ, η as in [5, §7]. Then for all sufficiently small positive δ , we have

$$\frac{m(1+\delta)+d\delta(2+5\delta)}{\gamma-\eta}<\kappa,\tag{5}$$

²⁾ We note that the μ may depend on ξ , in Theorem 5 below.

where d is the degree of K over the rationals. We then take solutions ξ_1, \dots, ξ_m of (4) from E such that $H(\xi_1) = q_1, \dots, H(\xi_m) = q_m$, where q_1, \dots, q_m are positive rational integers satisfying the conditions (32) and (50) of [5] and the inequality

$$\log q_1 > m\delta^{-1} \cdot \log (p_1 \cdot \cdot \cdot p_s).$$

We take positive rational integers r_1, \dots, r_m satisfying the inequalities (51) and (52) of [5].

We need the following lemma which can be proved by Roth's method as in [5].

Lemma. Suppose that the conditions just imposed on the numbers $m, \delta, \xi_1, \dots, \xi_m, q_1, \dots, q_m, r_1, \dots, r_m$ are satisfied. Then there exists a polynomial $Q(x_1, \dots, x_m)$ with rational integral coefficients, of degree at most r_j in x_j $(j=1,\dots,m)$, such that

- (i) the index of Q at the point (α, \dots, α) relative to r_1, \dots, r_m is at least $\gamma \eta$;
- (ii) $Q(\xi_1,\dots,\xi_m) \neq 0$;
- (iii) for all derivatives $Q_{i_1\cdots i_m}(x_1,\cdots,x_m)$, where i_1,\cdots,i_m are any nonnegative integers, we have, putting $B_1=[q_1^{i_{r_1}}]$,

$$|Q_{i_1...i_m}(x_1,\cdots,x_m)| < B_1^{1+2\delta} \prod_{j=1}^m (1+|x_j|) \epsilon.$$

Now the number $\varphi = Q(\xi_1, \dots, \xi_m)$ is an element of K and a fortiori an element of L. It follows from the relation

$$Q(\xi_1, \dots, \xi_m) = \sum_{i_1=0}^{r_1} \dots \sum_{i_m=0}^{r_m} Q_{i_1 \dots i_m}(\alpha, \dots, \alpha)(\xi_1 - \alpha)^{i_1} \dots (\xi_m - \alpha)^{i_m}$$

that

$$N(\varphi) \equiv 0 \pmod{p_1^{b_1} \cdots p_s^{b_s}},$$

where $N(\varphi)$ denotes the norm of φ defined in K and where

$$b_k = \min \sum_{j=1}^m \left[\kappa \mu_k \frac{\log q_j}{\log n_k} \right] i_j \qquad (1 \leq k \leq s),$$

the minimum being taken over all sets of integers i_1, \dots, i_m which satisfy the inequalities

$$\sum_{j=1}^{m} i_{j}/r_{j} \ge \gamma - \eta, \quad 0 \le i_{j} \le r_{j}$$
 $(1 \le j \le m),$

in view of the lemma. We have for $k=1,\cdots$, s

$$b_k > \min \sum_{j=1}^m \kappa \mu_k \frac{\log q_j^{ij}}{\log p_k} - mr_1,$$

$$p_k^{b_k} > p_k^{-mr_1} \cdot \min (q_1^{\mu_k i_1} \cdot \cdot \cdot q_m^{\mu_k i_m})^{\kappa}$$

whence

$$\prod_{k=1}^{s} p_{k}^{b_{k}} > q_{1}^{-r_{1}\delta} \cdot \min \left(q_{1}^{i_{1}} \cdots q_{m}^{i_{m}} \right)^{\kappa} \geq q_{1}^{f},$$
 $f = -r_{1}\delta + r_{1}(\gamma - \gamma)\kappa.$

Put $c_j = M(\xi_j)$ $(j=1,\dots,m)$. Then $c_1^{r_1} \cdots c_m^{r_m} N(\varphi)$ is a non-zero rational integer and it follows that

$$|c_1^{r_1}\cdots c_m^{r_m}N(\varphi)| \geq p_1^{b_1}\cdots p_s^{b_s} > q_1^f$$
.

On the other hand, we have as in [2, p. 151]

$$|c_1^{r_1}\cdots c_m^{r_m}N(\varphi)| < B_1^{d(1+2\delta)}\prod_{j=1}^m (6^dq_j)^r j \leq q_1^g,$$

where

$$g = r_1 d\delta(1+5\delta) + mr_1(1+\delta)$$
.

Combining these results, we obtain g > f, or

$$\frac{m(1+\delta)+d\delta(1+5\delta)+\delta}{\gamma-\eta}>\kappa,$$

contrary to (5). This completes the proof of Theorems 4 and 5.

References

- [1] A. O. Gel'fond: Transcendental and Algebraic Numbers (in Russian), Moscow (1952).
- [2] W. J. LeVeque: Topics in Number Theory, Reading Massachusetts, Vol. 2, Chapter 4 (1956).
- [3] K. Mahler: On the fractional parts of the powers of a rational number (II), Mathematika, 4, 122-124 (1957).
- [4] D. Ridout: Rational approximations to algebraic numbers, Mathematika, 4, 125-131 (1957).
- [5] K. F. Roth: Rational approximations to algebraic numbers, Mathematika, 2, 1-20, 168 (1955).
- [6] S. Uchiyama: On the Thue-Siegel-Roth theorem. I, Proc. Japan Acad., 35, 413-416 (1959).