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Department of Mathematics, Hokkaid6 University, Sapporo, Japan

(Comm. by Z. SUETUNA, M.J.A., :Nov. 12, 1959)

1. This is a continuation of a previous note under the same title
[6. In the following we shall be concerned with some further results
closely related to the Thue-Siegel-Roth theorem on the approximability
of an algebraic number by other algebraic numbers.

2. The Thue-Siegel-Roth theorem [_2 is an immediate consequence
of the following

Theorem 1. Let be any algebraic number other than zero and
let K be an algebraic number field of finite degree over the rationals.
If the inequality

[a--[< (H($)) ( i
is satisfied by infinitely many primitive numbers in K, then

f 2 when K is real, ( 2
1 when K is complex.1

Moreover, when K is the rational number field or an imaginary
quadratic number field, H() in (1) can be replaced by M() and the
bound (2)for is best possible.

For the definition of H() and M($) we refer to [6, 1]. The
first part of Theorem 1 is easily seen from W. J. LeVeque’s proof
of the Thue-Siegel-Roth theorem, and the second part is a well-known
theorem due to K. F. Roth [5] when K is the rational number field,
and Theorem 2 in [6] when K is an imaginary quadratic field. We
note that it is impossible, in general, to replace H($) in (1) by M($).

3. Let K be an algebraic number field. A non-zero integer of
K is said to be prime in K if the principal ideal generated by the
integer is a prime ideal in K. The associates of a number in K wilt
be identified with the number itself.

Theorem 2. Let a be any non-zero algebraic number and let K
be an imaginary quadratic number field. Let ui,..., us, v,..., v be
a finite set of distinct integers of K, each being supposed to be prime
in K. Let t, , c be real numbers satisfying

0zl, 0<:1, c:>0.
Let p, q be integers in K of the form

p p’u?1 us, q q*vl .tOrt
where al,..., as, b,..., b are non-negative rational integers and p*,
q* are integers of K such that

1) A field is complex if it is not a real field.
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o<lp*l clpl", o<lq*l clql
Then if >l +,, the inequality

o<l-p/ql<lql
has only a finite number of solutions in integers p, q in K of the
form specified above.

This result, being a refinement of Theorem 3 stated in [6, con-
stitutes an extension of a theorem of D. Ridout [4 to an imaginary
quadratic field. Proof of Theorem 2 can be carried out at once if one
refers to [4], on taking account of the argument developed in

4. Again, let K be an algebraic number field. Let a be an alge-
braic number, not necessarily in the field K. We define

[[a[]--min -- ],
where he minimum is aken over all integers n K. Clearly
if and only if a is an integer of K.

In virtue of Theorem we can prove
Theorem 3. Let a be any non-zero algebraic number, let K be

an imaginary quadratic number field and let u, v be integers of K
such that ]u]>] v I> 1. Suppose that the ideals (u) and (v) are relatively
prime and every prime ideal containing (u)(v) in K is principal.
Then for any real numbe,r >0, arbitrarily small but fixed, the in-
equality

K

is satisfied by at most a finite number of positive rational integers
n.

This is a generalization of a theorem due to K. Mahler [3].
5. We may naturally extend the method of Roth [5] to obtain

an analogue for non-archimedean valuations of the Thue-Siegel-Roth
theorem.

Let L be an algebraic number field. Given a prime ideal p in L
there exists a unique rational prime p=p(p) contained in p. We denote
by e=e(p) the order of p. If a is a number in L, we define as usual

0 for a 0,a I- p/ for a 4=0,
where a is a rational integer such that the fractional ideal 0(a) con-
tains the factor 0 in neither numerator nor denominator.

Theorem 4. Let a be any algebraic number other than zero and
let K be an algebraic number field of finite degree over the rationals.
Let 0,’", O be a finite set of prime ideals with distinct rational
primes P(O),’", P(O) in an arbitrary finite extension field L over

K(a). Then for each >2, the inequality

1 a-- ]< (U()) 8
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has only a finite n.umber of solutions in K.
We shall prove this theorem in some detail. First we re-formulate

Theorem 4. Let a be an integral ideal in L. If is a number belong-
ing to L, there is a representation ()=b/ with certain integral ideals
,c in L. We write

0 (mod )
if, in that representation of (), the ideal b is contained in and the
ideal c is prime to .

Now we put for the sake of brevity
p----p(p), e--e(p) (k----i,..., s).

For a positive rational integer q we set

I lgq I (k--1,...,s),a--e x/
log p

where /,...,/ are any non-negative real numbers) such that /+...
+/-1, and write

The following theorem can be regarded as an improvement of a
result of A. O. Gel’fond [1, 3.

Theorem 5. Let a, K, L, Pl,’",Ps be as in Theorem 4. Then
for each 2, the congruence

a--0 (mod a(H(); )) 4
has only finitely many solutions in K.

It is not difficult to see that Theorems 4 and 5 are mutually
equivalent and, in Theorem 4, there is no loss in generality in supposing
that a is an algebraic integer. Also, we may restrict ourselves to the
solutions of (3) and of (4) which are primitive numbers in K. Hence
we have only to prove Theorem 5 for integral a, ’s being restricted
to be primitive numbers in K. Further, we may suppose that none of
p,..., contain the ideal (a).

We suppose that Theorem 5 is false, so that for some x2, there
is an infinite set E of primitive numbers in K satisfying the con-
gruence (4). Let a be of degree n over the rationals. We choose a
positive rational integer m so large that m>4nm/ and

2m
m_4nm/.

which is possible since >2. Next we choose a sufficiently small
positive number satisfying the conditions (29) and (30) of [5. We
define 2, ’, ] as in [5, 7. Then for all sufficiently small positive ,
we have

d(2+5)<,- ( 5

2) We note that the z may depend on , in Theorem 5 below.
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where d is the degree of K over the rationals. We then take solutions
$1,’", $ of (4) from E such that H($)---q,..., H()--q, where ql,

.., q are positive rational integers satisfying the conditions (32)and
(50) of 5 and the inequality

log ql m-1. log (pl... Ps).
We take positive rational integers r,,..., r satisfying the inequalities
(51) and (52) of 5.

We need the following lemma which can be proved by Roth’s
method as in 5.

Lemma. Suppose that the conditions just imposed on the numbers
m, 3, $,..., $, q,..., q, r,..., r are satisfied. Then there exists a
polynomial Q(x,..., x) with rational integral coefficients, of degree at
most r in x (j-I,..., m), such that
( the index of Q at the point (a,..., ) relative to ,..., r is at
least y-;
(ii) Q($,...,$)0;
(iii) for all derivatives Q,...(x,..., x), where i,..., i are any non-
negative integers, we have, putting B--qJ,

]Q,...,,(x,..., x)<B+ H (l+]x ).
Now the number =Q($,. ., ) is an element of K and afortiori

an element of L. It follows from the relation

Q($z,..., $)= . . Q...(a,. ., a)($-a)i’. .($-a)
=0

that
N(e) (rood

where N() denotes the norm of defined in K and where
log qb-min
log p A

the minimum being taken over all sets of integers i,..., i which
satisfy the inequalities

i/r--, Oi (ljm),

in view of the lemma. We have for -1,...,

b >min log q}--m,
log p

p2>p%’. min (q;...q),
whence

k--1

Put c--M($) (j--l,..., m).
integer and it follows that

Then c?...cN() is a non-zero rational
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c’.., c"N((f) I>p p q.
On the other hand, we have as in [2, p. 151

c7’...c N() I<B(+) H (6q)q,
where

Combining these results, we obtain gf, or
m(1+)+d(l+5)+

contrary to (5). This completes the proof of Theorems 4 and 5.
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