120. On the Thue-Siegel-Roth Theorem. II

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, m.J.A., Nov. 12, 1959)

1. This is a continuation of a previous note under the same title [6]. In the following we shall be concerned with some further results closely related to the Thue-Siegel-Roth theorem on the approximability of an algebraic number by other algebraic numbers.
2. The Thue-Siegel-Roth theorem [2] is an immediate consequence of the following

Theorem 1. Let α be any algebraic number other than zero and let K be an algebraic number field of finite degree over the rationals. If the inequality

$$
\begin{equation*}
|\alpha-\xi|<(H(\xi))^{-\kappa} \tag{1}
\end{equation*}
$$

is satisfied by infinitely many primitive numbers ξ in K, then

$$
\kappa \leqq \begin{cases}2 & \text { when } K \text { is real, } \tag{2}\\ 1 & \text { when } K \text { is complex. }\end{cases}
$$

Moreover, when K is the rational number field or an imaginary quadratic number field, $H(\xi)$ in (1) can be replaced by $M(\xi)$ and the bound (2) for κ is best possible.

For the definition of $H(\xi)$ and $M(\xi)$ we refer to $[6, \S 1]$. The first part of Theorem 1 is easily seen from W. J. LeVeque's proof [2] of the Thue-Siegel-Roth theorem, and the second part is a well-known theorem due to K. F. Roth [5] when K is the rational number field, and Theorem 2 in [6] when K is an imaginary quadratic field. We note that it is impossible, in general, to replace $H(\xi)$ in (1) by $M(\xi)$.
3. Let K be an algebraic number field. A non-zero integer of K is said to be prime in K if the principal ideal generated by the integer is a prime ideal in K. The associates of a number in K will be identified with the number itself.

Theorem 2. Let α be any non-zero algebraic number and let K be an imaginary quadratic number field. Let $u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{t}$ be a finite set of distinct integers of K, each being supposed to be prime in K. Let μ, ν, c be real numbers satisfying

$$
0 \leqq \mu \leqq 1, \quad 0 \leqq \nu \leqq 1, \quad c>0
$$

Let p, q be integers in K of the form

$$
p=p^{*} u_{1}^{a_{1}} \cdots u_{s}^{\alpha_{s}}, \quad q=q^{*} v_{1}^{b_{1}} \cdots v_{t}^{b_{t}},
$$

where $a_{1}, \cdots, a_{s}, b_{1}, \cdots, b_{t}$ are non-negative rational integers and p^{*}, q^{*} are integers of K such that

1) A field is complex if it is not a real field.

$$
0<\left|p^{*}\right| \leqq c|p|^{*}, \quad 0<\left|q^{*}\right| \leqq c|q|^{*} .
$$

Then if $\kappa>\mu+\nu$, the inequality

$$
0<|\alpha-p / q|<|q|^{-\kappa}
$$

has only a finite number of solutions in integers p, q in K of the form specified above.

This result, being a refinement of Theorem 3 stated in [6], constitutes an extension of a theorem of D. Ridout [4] to an imaginary quadratic field. Proof of Theorem 2 can be carried out at once if one refers to [4], on taking account of the argument developed in [6, §3].
4. Again, let K be an algebraic number field. Let α be an algebraic number, not necessarily in the field K. We define

$$
\|\alpha\|_{K}=\min |\alpha-\xi|,
$$

where the minimum is taken over all integers ξ in K. Clearly $\|\alpha\|_{K}=0$ if and only if α is an integer of K.

In virtue of Theorem 2 we can prove
Theorem 3. Let a be any non-zero algebraic number, let K be an imaginary quadratic number field and let u, v be integers of K such that $|u|>|v|>1$. Suppose that the ideals (u) and (v) are relatively prime and every prime ideal containing $(u)(v)$ in K is principal. Then for any real number $\varepsilon>0$, arbitrarily small but fixed, the inequality

$$
\left\|\alpha\left(\frac{u}{v}\right)^{n}\right\|_{K}<e^{-s n}
$$

is satisfied by at most a finite number of positive rational integers n.

This is a generalization of a theorem due to K. Mahler [3].
5. We may naturally extend the method of Roth [5] to obtain an analogue for non-archimedean valuations of the Thue-Siegel-Roth theorem.

Let L be an algebraic number field. Given a prime ideal \mathfrak{p} in L there exists a unique rational prime $p=p(\mathfrak{p})$ contained in \mathfrak{p}. We denote by $e=e(\mathfrak{p})$ the order of \mathfrak{p}. If α is a number in L, we define as usual

$$
|\alpha|_{p}= \begin{cases}0 & \text { for } \alpha=0, \\ p^{a / e} & \text { for } \alpha \neq 0,\end{cases}
$$

where a is a rational integer such that the fractional ideal $\mathfrak{p}^{a}(\alpha)$ contains the factor \mathfrak{p} in neither numerator nor denominator.

Theorem 4. Let α be any algebraic number other than zero and let K be an algebraic number field of finite degree over the rationals. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}$ be a finite set of prime ideals with distinct rational primes $p\left(\mathfrak{p}_{1}\right), \cdots, p\left(\mathfrak{p}_{s}\right)$ in an arbitrary finite extension field L over $K(\alpha)$. Then for each $\kappa>2$, the inequality

$$
\begin{equation*}
\prod_{k=1}^{s}|\alpha-\xi|_{p_{k}}<(H(\xi))^{-\varepsilon} \tag{3}
\end{equation*}
$$

has only a finite number of solutions ξ in K.
We shall prove this theorem in some detail. First we re-formulate Theorem 4. Let \mathfrak{a} be an integral ideal in L. If ζ is a number belonging to L, there is a representation $(\zeta)=\mathfrak{b} / \mathfrak{c}$ with certain integral ideals $\mathfrak{b}, \mathfrak{c}$ in L. We write

$$
\zeta \equiv 0 \quad(\bmod \mathfrak{a})
$$

if, in that representation of (ζ), the ideal \mathfrak{b} is contained in \mathfrak{a} and the ideal c is prime to a.

Now we put for the sake of brevity

$$
p_{k}=p\left(\mathfrak{p}_{k}\right), \quad e_{k}=e\left(\mathfrak{p}_{k}\right) \quad(k=1, \cdots, s)
$$

For a positive rational integer q we set

$$
a_{k}=e_{k}\left[\kappa \mu_{k} \frac{\log q}{\log p_{k}}\right] \quad(k=1, \cdots, s)
$$

where μ_{1}, \cdots, μ_{s} are any non-negative real numbers ${ }^{2)}$ such that $\mu_{1}+\cdots$ $+\mu_{s}=1$, and write

$$
\mathfrak{a}(q ; \kappa)=\prod_{k=1}^{s} p_{k}^{\alpha_{k}}
$$

The following theorem can be regarded as an improvement of a result of A. O. Gel'fond [1, §3].

Theorem 5. Let $\alpha, K, L, \mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}$ be as in Theorem 4. Then for each $\kappa>2$, the congruence

$$
\begin{equation*}
\alpha-\xi \equiv 0 \quad(\bmod \mathfrak{a}(H(\xi) ; \kappa)) \tag{4}
\end{equation*}
$$

has only finitely many solutions ξ in K.
It is not difficult to see that Theorems 4 and 5 are mutually equivalent and, in Theorem 4, there is no loss in generality in supposing that α is an algebraic integer. Also, we may restrict ourselves to the solutions ξ of (3) and of (4) which are primitive numbers in K. Hence we have only to prove Theorem 5 for integral α, ξ 's being restricted to be primitive numbers in K. Further, we may suppose that none of $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{s}$ contain the ideal (α).

We suppose that Theorem 5 is false, so that for some $\kappa>2$, there is an infinite set E of primitive numbers ξ in K satisfying the congruence (4). Let α be of degree n over the rationals. We choose a positive rational integer m so large that $m>4 n m^{1 / 2}$ and

$$
\frac{2 m}{m-4 n m^{1 / 2}}<\kappa
$$

which is possible since $\kappa>2$. Next we choose a sufficiently small positive number δ satisfying the conditions (29) and (30) of [5]. We define λ, γ, η as in $[5, \S 7]$. Then for all sufficiently small positive δ, we have

$$
\begin{equation*}
\frac{m(1+\delta)+d \delta(2+5 \delta)}{\gamma-\eta}<\kappa, \tag{5}
\end{equation*}
$$

2) We note that the μ may depend on ξ, in Theorem 5 below.
where d is the degree of K over the rationals. We then take solutions ξ_{1}, \cdots, ξ_{m} of (4) from E such that $H\left(\xi_{1}\right)=q_{1}, \cdots, H\left(\xi_{m}\right)=q_{m}$, where q_{1}, \cdots, q_{m} are positive rational integers satisfying the conditions (32) and (50) of [5] and the inequality

$$
\log q_{1}>m \delta^{-1} \cdot \log \left(p_{1} \cdots p_{s}\right)
$$

We take positive rational integers r_{1}, \cdots, r_{m} satisfying the inequalities (51) and (52) of [5].

We need the following lemma which can be proved by Roth's method as in [5].

Lemma. Suppose that the conditions just imposed on the numbers $m, \delta, \xi_{1}, \cdots, \xi_{m}, q_{1}, \cdots, q_{m}, r_{1}, \cdots, r_{m}$ are satisfied. Then there exists a polynomial $Q\left(x_{1}, \cdots, x_{m}\right)$ with rational integral coefficients, of degree at most r_{j} in $x_{j}(j=1, \cdots, m)$, such that
(i) the index of Q at the point (α, \cdots, α) relative to r_{1}, \cdots, r_{m} is at least $\gamma-\eta$;
(ii) $Q\left(\xi_{1}, \cdots, \xi_{m}\right) \neq 0$;
(iii) for all derivatives $Q_{i_{1} \cdots i_{m}}\left(x_{1}, \cdots, x_{m}\right)$, where i_{1}, \cdots, i_{m} are any nonnegative integers, we have, putting $B_{1}=\left[q_{1}^{\delta r_{1}}\right]$,

$$
\left|Q_{i_{1} \cdots i_{m}}\left(x_{1}, \cdots, x_{m}\right)\right|<B_{1}^{1+2 \delta} \prod_{j=1}^{m}\left(1+\left|x_{j}\right|\right) j
$$

Now the number $\varphi=Q\left(\xi_{1}, \cdots, \xi_{m}\right)$ is an element of K and a fortiori an element of L. It follows from the relation

$$
Q\left(\xi_{1}, \cdots, \xi_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \cdots \sum_{i_{m}=0}^{r_{m}} Q_{i_{1} \cdots i_{m}}(\alpha, \cdots, \alpha)\left(\xi_{1}-\alpha\right)^{i_{1}} \cdots\left(\xi_{m}-\alpha\right)^{i_{m}}
$$

that

$$
N(\varphi) \equiv 0 \quad\left(\bmod p_{1}^{b_{1}} \cdots p_{s}^{b_{s}}\right)
$$

where $N(\varphi)$ denotes the norm of φ defined in K and where

$$
b_{k}=\min \sum_{j=1}^{m}\left[\kappa \mu_{k} \frac{\log q_{j}}{\log p_{k}}\right] i_{j} \quad(1 \leqq k \leqq s),
$$

the minimum being taken over all sets of integers i_{1}, \cdots, i_{m} which satisfy the inequalities

$$
\sum_{j=1}^{m} i_{j} / r_{j} \geqq \gamma-\eta, \quad 0 \leqq i_{j} \leqq r_{j} \quad(1 \leqq j \leqq m)
$$

in view of the lemma. We have for $k=1, \cdots, s$

$$
\begin{aligned}
& b_{k}>\min \sum_{j=1}^{m} \kappa \mu_{k} \frac{\log q_{j}^{i_{j}}}{\log p_{k}}-m r_{1}, \\
& p_{k}^{b_{k}}>p_{k}^{-m r_{1}} \cdot \min \left(q_{1}^{\mu_{k} i_{1}} \cdots q_{m}^{\mu_{k} i_{m}}\right)^{k},
\end{aligned}
$$

whence

$$
\begin{gathered}
\prod_{k=1}^{s} p_{k^{k}}^{b_{k}}>q_{1}^{-r_{1} \delta} \cdot \min \left(q_{1}^{i_{1}} \cdots q_{m}^{i_{m} m}\right)^{k} \geqq q_{1}^{f} \\
f=-r_{1} \delta+r_{1}(\gamma-\eta) k
\end{gathered}
$$

Put $c_{j}=M\left(\xi_{j}\right)(j=1, \cdots, m)$. Then $c_{1}^{r_{1}} \cdots c_{m}^{r_{m}} N(\varphi)$ is a non-zero rational integer and it follows that

$$
\left|c_{1}^{r_{1}} \cdots c_{m}^{r_{m}} N(\varphi)\right| \geqq p_{1}^{b_{1}} \cdots p_{s}^{s_{s}}>q_{1}^{f} .
$$

On the other hand, we have as in [2, p. 151]

$$
\left|c_{1}^{r_{1}} \cdots c_{m}^{r_{m}} N(\varphi)\right|<B_{1}^{a(1+2 \delta)} \prod_{j=1}^{m}\left(6^{a} q_{j}\right)^{r_{j}} \leqq q_{1}^{g}
$$

where

$$
g=r_{1} d \delta(1+5 \delta)+m r_{1}(1+\delta) .
$$

Combining these results, we obtain $g>f$, or

$$
\frac{m(1+\delta)+d \delta(1+5 \delta)+\delta}{\gamma-\eta}>\kappa,
$$

contrary to (5). This completes the proof of Theorems 4 and 5.

References

[1] A. O. Gel'fond: Transcendental and Algebraic Numbers (in Russian), Moscow (1952).
[2] W. J. LeVeque: Topics in Number Theory, Reading Massachusetts, Vol. 2, Chapter 4 (1956).
[3] K. Mahler: On the fractional parts of the powers of a rational number (II), Mathematika, 4, 122-124 (1957).
[4] D. Ridout: Rational approximations to algebraic numbers, Mathematika, 4, 125-131 (1957).
[5] K. F. Roth: Rational approximations to algebraic numbers, Mathematika, 2, 1-20, 168 (1955).
[6] S. Uchiyama: On the Thue-Siegel-Roth theorem. I, Proc. Japan Acad., 35, 413-416 (1959).

