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1. This is a continuation of a previous note under the same title
[6]. In the following we shall be concerned with some further results
closely related to the Thue-Siegel-Roth theorem on the approximability
of an algebraic number by other algebraic numbers.

2. The Thue-Siegel-Roth theorem [2] is an immediate consequence
of the following

Theorem 1. Let a be any algebraic number other than zero and
let K be an algebraic number field of finite degree over the rationals.
If the inequality

| a—¢ ] <(H(E)™ (1)
is satisfied by infinitely many primitive numbers & in K, then
K§{2 when K z:s real, (2)
1 when K is complex.®
Moreover, when K is the rational mumber field or an imaginary
quadratic number field, H(&) in (1) can be replaced by M(£) and the
bound (2) for k is best possible.

For the definition of H(¢) and M(&) we refer to [6, §1]. The
first part of Theorem 1 is easily seen from W. J. LeVeque’s proof [2]
of the Thue-Siegel-Roth theorem, and the second part is a well-known
theorem due to K. F. Roth [5] when K is the rational number field,
and Theorem 2 in [6] when K is an imaginary quadratic field. We
note that it is impossible, in general, to replace H(¢) in (1) by M(E).

3. Let K be an algebraic number field. A non-zero integer of
K is said to be prime im K if the principal ideal generated by the
integer is a prime ideal in K. The associates of a number in K will
be identified with the number itself.

Theorem 2. Let a be any non-zero algebraic number and let K
be an imaginary quadratic number field. Let w,---,u, v, -+, v, be
a finite set of distinct integers of K, each being supposed to be prime
wn K. Let p, v, ¢ be real numbers satisfying

0=<p=<1l, 0=v<1, ¢>0.
Let p,q be integers in K of the form
p=pruptc--up, g=q*vn- -,
where ay,- -+, a, b+, b, are non-negative rational integers and p*,
q* are integers of K such that

1) A field is complex if it is not a real field,
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0<|p*|=c|p|", 0<|q*|=c|q|"
Then if £>p+v, the inequality
0<|a—p/g|<|a|™*
has only a finite number of solutions in integers p,q in K of the
Jorm specified above.

This result, being a refinement of Theorem 3 stated in [6], con-
stitutes an extension of a theorem of D. Ridout [4] to an imaginary
quadratic field. Proof of Theorem 2 can be carried out at once if one
refers to [4], on taking account of the argument developed in [6, § 3].

4. Again, let K be an algebraic number field. Let « be an alge-
braic number, not necessarily in the field K. We define

llallg=min|a—¢],
where the minimum is taken over all integers £ in K. Clearly ||a||z=0
if and only if « is an integer of K.

In virtue of Theorem 2 we can prove

Theorem 3. Let a be any non-zero algebraic number, let K be
an imaginary quadratic number field and let u, v be integers of K
such that |u|>|v|>1. Suppose that the ideals (u) and (v) are relatively
prime and every prime ideal containing (u)(v) in K is principal.
Then for any real number ¢>0, arbitrarily small but fixed, the in-

equality
[«C5)

18 satisfied by at most a finite number of positive rational integers
n.

<Le "
K

This is a generalization of a theorem due to K. Mahler [3].

5. We may naturally extend the method of Roth [56] to obtain
an analogue for non-archimedean valuations of the Thue-Siegel-Roth
theorem.

Let L be an algebraic number field. Given a prime ideal p in L
there exists a unique rational prime p=p(p) contained in p. We denote
by e=e(p) the order of p. If a is a number in L, we define as usual

la'»z{o for a =0,
p*e for a0,
where a is a rational integer such that the fractional ideal p*(a) con-
tains the factor p in neither numerator nor denominator.

Theorem 4. Let a be any algebraic number other than zero and
let K be an algebraic mumber field of finite degree over the rationals.
Let p,,---,p, be a finite set of prime ideals with distinct rational
primes p(p,),- -+, p(b,) in an arbitrary finite extension field L over
K(a). Then for each £>2, the inequality

11| a—¢ |, <(HE) ™ (3)
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has only a finite number of solutions & in K.

We shall prove this theorem in some detail. First we re-formulate
Theorem 4. Let a be an integral ideal in L. If { is a number belong-
ing to L, there is a representation ({)=0/c with certain integral ideals
b,c in L. We write

=0 (mod a)
if, in that representation of (), the ideal b is contained in a and the
ideal ¢ is prime to a.
Now we put for the sake of brevity

2, =p(be), e,=e(d;) (k=1,---,s).
For a positive rational integer ¢ we set
a’kzekl:’cﬂlc log g ] (kzl, Ct S),
log p;
where py,---, ¢, are any non-negative real numbers® such that g, +---

+p,=1, and write
a(g; k)= I pie.

The following theorem can be regarded as an improvement of a
result of A. O. Gel’fond [1, §3].

Theorem 5. Let a, K, L, b,,---,p, be as in Theorem 4. Then
for each £>2, the congruence

a—¢=0  (moda(H(ir)  (4)
has only finitely many solutions & in K.

It is not difficult to see that Theorems 4 and 5 are mutually
equivalent and, in Theorem 4, there is no loss in generality in supposing
that « is an algebraic integer. Also, we may restrict ourselves to the
solutions & of (8) and of (4) which are primitive numbers in K. Hence
we have only to prove Theorem 5 for integral «, &’s being restricted
to be primitive numbers in K. Further, we may suppose that none of
Py, e+, b, contain the ideal (a).

We suppose that Theorem 5 is false, so that for some £>2, there
is an infinite set E of primitive numbers ¢ in K satisfying the con-
gruence (4). Let a be of degree » over the rationals. We choose a
positive rational integer m so large that m >4nm'? and

—-—————2m <K
m—4anm*:
which is possible since ©#>2. Next we choose a sufficiently small
positive number § satisfying the conditions (29) and (80) of [5]. We
define 2,7,7 as in [5, §7]. Then for all sufficiently small positive 4,
we have
m(1+06)+ d5(2+55)</s,
=7
2) We note that the « may depend on ¢, in Theorem 5 below.

(5)
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where d is the degree of K over the rationals. We then take solutions
&, -+, &, of (4) from E such that H(¢)=q,,---, H(,)=q,, where q,,
-+, q, are positive rational integers satisfying the conditions (82) and
(50) of [5] and the inequality
log ¢, >md"*-log (p,- - - p,).

We take positive rational integers r,,-- -, r, satisfying the inequalities
(51) and (52) of [5].

We need the following lemma which can be proved by Roth’s
method as in [5].

Lemma. Suppose that the conditions just imposed on the numbers

m, 8, &,y Emy Qiyt * 3 A, 11,0+, T are satisfied. Then there exists a
polynomial Q(x,,- - -, x,) with rational integral coefficients, of degree at
most r, in «; (j=1,---, m), such that

(i) the index of @ at the point (a,::-, a) relative to »,---,r, is at
least 7—m;

(ii) Q-+, 6,)F0;

(iii) for all derivatives Q,...., (%, -, ,), where 1,,- -+, i,, are any non-

negative integers, we have, putting B,=[¢{"1],
| Qi (@1, -, @) | < BIFY H1 (1+]|z,])s.
J=
Now the number ¢=Q(&,-- -, &,) is an element of K and a fortior:
an element of L. It follows from the relation
Q($17° ) ém): igo’ ° 'iZHOQn“'im(a" ) a’)(gl_a)i1 o '(‘Em_'a)im
that
N(p)=0 (mod pi* - - - ),
where N(¢) denotes the norm of ¢ defined in K and where
b,=min ﬁ [ﬁﬂk logg, ]
= log p,
the minimum being taken over all sets of integers <,,---,%, which
satisfy the inequalities

ii (lékés)’

i’"ij/mzr—v, 0=1,=r; (1=75<m),
=1
in view of the lemma. We have for k=1,-.-,s

m Z45
b, >min > ky, log gy —mr,,
=1 " " log py

Pie>py"™ - min (- - - gm)",
whence

mw

pre>qr"’ min (g - - - @un) =4,

f==rd+r(r—n)k.
Put ¢,=M(,) (j=1,---,m). Then ci*- . -c,N(¢p) is a non-zero rational
integer and it follows that

k=1
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|¢fte v ecnmN(p) |=plt- - - 02 > g
On the other hand, we have as in [2, p. 151]
|- cznN(g) | < B 11 (6% 1=,
=1
where
g=r,dé(1450) +mr,(1+56).
Combining these results, we obtain g>f, or
m(1+6)+do(1+56)+0 —r
=7 ’
contrary to (5). This completes the proof of Theorems 4 and 5.
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