No. 5]

65. Adjoint Space and Dual Space

By Toshio SHIBATA

Tokyo University of Education
(Comm. by K. KUNUGI, M.J.A., May 19, 1960)

1. Introduction. Concerning the relation between a locally convex space E and its dual space E' (the totality of continuous linear functionals), the conditions of the semi-reflexivity, the reflexivity, etc. are well known, under the foundation of Mackey's theorem (for ex. [1]). On the other hand, as a space of linear functionals on E, there is a method to consider its $adjoint\ space\ \overline{E}$ (the totality of linear functionals which are bounded on each bounded set in E) and the condition of reflexivity is known [2].

In this paper, we consider the relation between the adjoint space \overline{E} and the dual space E' of a locally convex separative space E, especially, we give a theorem of Mackey's type with respect to the adjoint space (Theorem 1).

For a locally convex separative topology T of a linear space E, its adjoint space and its dual space are denoted by $(\overline{E};T)$ and (E;T)', respectively. Two locally convex topologies T_1 and T_2 of E are said to be equivalent with respect to bounded set, when the concepts of the boundedness under T_1 and T_2 are identical, and this equivalence is denoted by $T_1 \stackrel{b}{\sim} T_2$.

2. A theorem of Mackey's type. Let (E,F) be a separative dual system of two linear spaces. The necessary and sufficient condition that a locally convex separative topology T on E is compatible with the dual system (E,F), that is, (E;T)'=F, is that T is stronger than the topology $\sigma(E,F)$ and weaker than the Mackey's topology $\tau(E,F)$ (theorem of Mackey). The following theorem is one of this type concerning the adjoint space.

THEOREM 1. Let (E, F) be a separative dual system of two linear spaces. The necessary and sufficient condition that F is the adjoint space of E with a locally convex separative topology T on E, or $(\overline{E}; T) = F$ symbolically, is that:

- 1. $T \stackrel{b}{\sim} \sigma(E, F)$
- 2. the Mackey's topology $\tau(E, F)$ is bornologic.

Proof. Necessity. We denote by \mathfrak{A} , the totality of bounded sets under the topology T, and consider a topology T_0 on E defined by all disks which absorb each bounded set under the topology T. T_0 is

called \mathfrak{A} -topology.* This topology T_0 is bornologic and the totality of bounded sets under T_0 is also \mathfrak{A} , or $T_0 \stackrel{b}{\sim} T$. Then $(E; T_0)' = (\overline{E; T_0}) = F$ under our assumption. Therefore, \mathfrak{A} is the totality of bounded sets under the topology $\sigma(E, F)$, or $T \stackrel{b}{\sim} \sigma(E, F)$ and T_0 coincides with the topology $\sigma(E, F)$, or $\sigma(E, F)$ is bornologic.

Sufficiency. The adjoint space of E with the topology $\tau(E, F)$ coincides with F on account of our assumption 2. Then $(\overline{E;T})=F$ because of the condition 1.

REMARK 1. When the adjoint space of E with a topology T is F, the topology T is weaker than the topology $\tau(E,F)$. But T is not necessarily comparable with the topology $\sigma(E,F)$. In other words, the dual space of E with the topology T is not necessarily the space F.

REMARK 2. For a separative dual system (E,F), there exists, always, a topology T on E by which the dual space is F. However, there exists not necessarily a topology of E by which the adjoint space is F. For example, when the topology of E is "tonnelé" and is not bornologic, there is no topology T on E by which the adjoint space is E' for the dual system (E,E'), because the topology "tonnelé" is not else than the topology $\tau(E,E')$. Whence, the adjoint space is not E'.

3. Semi-reflexivity with respect to adjoint space. Let E be a locally convex separative space. We denote by T its topology and by $\mathfrak A$ the totality of bounded sets under the topology T. On the adjoint space \overline{E} , the topology of $\mathfrak A$ -convergence is denoted by $\beta(\overline{E},E)$ and the totality of bounded sets under $\beta(\overline{E},E)$ is denoted by $\overline{\mathfrak A}$. In the same way, from the space \overline{E} with the topology $\beta(\overline{E},E)$, its adjoint space \overline{E} and the topology $\beta(\overline{E},\overline{E})$ of $\overline{\mathfrak A}$ -convergence are defined. The topology on E induced by $\beta(\overline{E},\overline{E})$ is the $\mathfrak A$ -topology used in the above paragraph, and it coincides with the initial topology T, if and only if T is bornologic. When \overline{E} coincides with E algebraically, that is, $(\overline{E}; \beta(\overline{E},\overline{E})) = E$, E is said to be adjoint semi-reflexive.

THEOREM 2. The necessary and sufficient condition that a locally convex separative space E is adjoint semi-reflexive, is that:

- 1. every bounded disk in E is $\sigma(E, \overline{E})$ relatively compact,
- 2. the topology $\beta(\overline{E}, E)$ is bornologic.

PROOF. When we apply THEOREM 1 to the dual system (\overline{E}, E) , the condition of adjoint semi-reflexivity is that:

1'. $\beta(\overline{E}, E \stackrel{b}{\sim} \sigma(\overline{E}, E),$

^{*)} Let $\overline{\mathfrak{A}}$ be the totality of bounded sets under the topology of \mathfrak{A} -convergence on $\overline{E} = \overline{(E;T)}$, then \mathfrak{A} -topology is not else than the topology of $\overline{\mathfrak{A}}$ -convergence on E with respect to the dual system (E,\overline{E}) .

2'. $\tau(\overline{E}, E)$ is bornologic.

Now, we assume the conditions 1', 2'. Generally, the topology $\beta(\overline{E},E)$ is stronger than the topology $\tau(\overline{E},E)$. On account of the condition 1' the topology $\beta(\overline{E},E)$ is equivalent to the topology $\tau(\overline{E},E)$ with respect to bounded set. Then $\beta(\overline{E},E)$ coincides with $\tau(\overline{E},E)$ because of the assumption 2'. Therefore the topology $\beta(\overline{E},E)$ is bornologic and every bounded disk in E is $\sigma(E,\overline{E})$ relatively compact.

Next, we assume the conditions 1, 2. On account of the condition 1, the topology $\tau(\overline{E}, E)$ coincides with the topology $\beta(\overline{E}, E)$. Then the topology $\tau(\overline{E}, E)$ is bornologic and $\beta(\overline{E}, E) \stackrel{b}{\sim} \sigma(\overline{E}, E)$.

COROLLARY 1. If a locally convex separative space E is adjoint semi-reflexive, then E is semi-reflexive in the ordinary sense.

Because the topology $\sigma(E, \overline{E})$ is stronger than the topology $\sigma(E, E')$. COROLLARY 2. If a locally convex separative space E is adjoint semi-reflexive, then its adjoint space \overline{E} with the topology $\beta(\overline{E}, E)$ is adjoint reflexive.

Because, the topologies $\beta(\overline{E}, E)$ and $\beta(E, \overline{E})$ are both bornologic. COROLLARY 3. A locally convex separative space E is adjoint reflexive when and only when the following conditions are satisfied:

- 1. the initial topology on E is bornologic,
- 2. the topology $\beta(\overline{E}, E)$ on \overline{E} is bornologic,
- 3. every bounded disk in E is $\sigma(E, \overline{E})$ relatively compact [2]. COROLLARY 4. If a locally convex separative space E is adjoint reflexive, then E is reflexive in the ordinary sense.

REMARK 1. If A' is a $\sigma(E',E)$ relatively compact disk in the dual space E' of a locally convex space E, then A' is bounded under the topology $\beta(E',E)$. But the converse is not necessarily true. However, for a disk \overline{A} in the adjoint space \overline{E} , the concepts of $\sigma(\overline{E},E)$ relative compactness and $\beta(\overline{E},E)$ boundedness are identical, because the topology $\beta(E,\overline{E})$ coincides with the topology $\tau(E,\overline{E})$ in E.

Remark 2. The condition 1 in Theorem 2 means that the dual space of the space \overline{E} with the topology $\beta(\overline{E},E)$ is the space E. In the same method in the proof of Theorem 2, we obtain that the adjoint space of the dual space E' with the topology $\beta(E',E)$ is the space E if and only if

- 1. E is semi-reflexive, 2. $\beta(E', E)$ is bornologic.
- 4. A condition for $E' = \overline{E}$. We apply Theorem 1 to the dual system composed of a locally convex separative space E and its dual space E'. Then we obtain:

THEOREM 3. The adjoint space \overline{E} coincides with the dual space E' for a locally convex separative space E if and only if the topology $\tau(E,E')$ is bornologic.

That \overline{E} coincides with E' means that the initial topology in E is stronger than the topology $\sigma(E,\overline{E})$. In this direction, we obtain the following condition for $E'=\overline{E}$.

THEOREM 4. The adjoint space \overline{E} coincides with the dual space E' for a locally convex separative space E if and only if every disk in E satisfying the following conditions is a neighbourhood of 0 in E.

- 1. V absorbs each bounded set in E,
- 2. the quotient space E/F by $F = \bigcap_{i=1}^{n} \varepsilon V$ is one dimensional.

PROOF. We assume that $\overline{E}=E'$. Let V be a disk satisfying the conditions 1, 2. If G is an algebraic supplement of F, then G is one dimensional. The projection V_1 of V into G is a disk in G. Let f be a linear functional on G such that $V_1 \subset \{z \in G: |\langle z, f \rangle | \leq 1\} \subset \lambda V_1$ for some $\lambda > 1$. Every element $x \in E$ is uniquely decomposed into x = y + z, $y \in F$, $z \in G$. Then we define a linear functional \overline{x} on E by the relation $\langle x, \overline{x} \rangle = \langle z, f \rangle$. If $x \in V$, $|\langle x, \overline{x} \rangle| = |\langle z, f \rangle| \leq 1$. Therefore, \overline{x} is bounded linear functional on E because of the condition 1 and so \overline{x} is continuous by our assumption. If $|\langle x, \overline{x} \rangle| \leq 1$, x = y + z, then $y \in F \subset V$, $z \in \lambda V_1 \subset \lambda V$ and so $x \in (\lambda+1)V$. Thus V is a neighbourhood of 0 in E.

Conversely, if \overline{x} is a non zero bounded linear functional on E, then $V = \{x: |\langle x, \overline{x} \rangle| \leq 1\}$ is a disk satisfying the conditions 1, 2, and so V is a neighbourhood of 0 in E or \overline{x} is continuous.

REMARK. In the same way as the above proof, we obtain the conditions for $E'=E^+$ and $\overline{E}=E^+$ where E^+ is the algebraic dual of E. For an absorbant disk V in E, the former is that if E/F is one dimensional then V is a neighbourhood of 0 and the latter is that if E/F is one dimensional, then V absorbs each bounded set, where $F=\bigcap_{\epsilon>0} \varepsilon V$ in both cases.

5. An example of $E' \neq \overline{E}$. If the topology $\tau(E, E')$ is not bornologic, then $E' \neq \overline{E}$ (REMARK 2 in the paragraph 2). Here, we give a simple example of such E.

Let R be the segment [0,1] and \Re be the totality at most countable sets in R. Or more generally, let R be an abstract set, and \Re be a family of subsets in R which satisfy the following three conditions:

- 1. $R \in \mathbb{R}$; 2. if $K_i \in \mathbb{R}$, $i = 1, 2, \dots$, then $\bigcup_{i=1}^{\infty} K_i \in \mathbb{R}$;
- 3. for each point $t \in R$ there is a set $K \in \Re$ such that $t \in K$. Let E be the linear space composed of all functions x = x(t) on R

such that each x=x(t) is constant outside of some $K: x(t)=x_K=\text{const.}$ for $t \notin K$. Such K may be called a *supporting set* of x. The topology of E is the topology of simple convergence at each point of E. Let E be a linear functional on E such that $\langle x, L \rangle = x_K$ for $x \in E$.

L is not continuous. If it is continuous, there exists $t_i \in R$, i=1, $2, \dots, k$, and a positive number δ such that $x \in E \mid x(t_i) \mid \leq \delta$, $i=1, 2, \dots, k$, implies $|\langle x, L \rangle| \leq 1$. On the other hand, a function x=x(t) such that $x(t_i)=0$, $i=1, 2, \dots, k$ and x(t)=2 otherwise, belongs to E. Then $\langle x, L \rangle = 2$. This is a contradiction.

L is bounded on each bounded set. If not so, there is a bounded set A in E such that $|\langle x_n, L \rangle| > n$, $x_n \in A$, $n=1,2,\cdots$. Let K_n be a supporting set of x_n , and put $K = \bigcup_{n=1}^{\infty} K_n$. Because of $K \neq R$, $x_n(t_0) = \langle x_n, L \rangle$ for $t_0 \notin K$, and $|x_n(t_0)| > n$. This contradicts the boundedness of A.

The space is a dense subspace of the space $E_0 = \prod_{i \in R} C_i$, where C_t is the scalar field and the topology of E_0 is the product topology of $\{C_i; t \in R\}$. Let F be the space $\sum_{i \in R} C_i$, that is, the direct sum of $\{C_i; t \in R\}$, then (E, F) is a separative dual system and the topology of E is not else than the topology $\sigma(E, F)$. Now, we show that each bounded set E in E with the topology E is a finite dimensional bounded set, that is, there exists a finite set E is E in E such that

$$\sup_{y \in B} |y(t_i)| < M, \ i = 1, 2, \dots, k; \ y(t) = 0 \ (t \neq t_i, \ y \in B).$$

If not so, we can select a sequence $t_n \in R$ and $y_n \in B$, $n=1, 2, \cdots$ such that: $y_n(t_n) = \eta_n \neq 0$; $y_n(t_m) = 0$ (m > n). We put $k_m = \sup_n |y_n(t_m)|$ $(m=1, 2, \cdots)$ which is finite because of the $\sigma(F, E)$ boundedness of B and define an element $x = x(t) \in E$ by $x(t_n) = \xi_n$; x(t) = 0 otherwise, where $\xi_1 = 1/|\eta_1|$, $\xi_n = \{n + \xi_1 k_1 + \cdots + \xi_{n-1} k_{n-1}\}/|\eta_n|$. Then $|\langle x, y_n \rangle| > n$. This is a contradiction.

Thus, the weakly bounded set B in E'=F is equi-continuous, and the topology of E coincides with the topology $\tau(E,F)$. Therefore the topology of E is "tonnelé" but not bornologic and not complete.

6. A disk on which bounded linear functionals are continuous. We characterize a subset A of a locally convex space E such that every linear functional bounded on A is continuous. This characterization is a generalization of the result known for the metrizable case [3]. If a linear functional f is bounded on A, f is also bounded on the disk envelope of A, so we consider only a disk A.

Theorem 5. Let A be a disk in a locally convex space E. The following conditions are equivalent each other.

1. For any locally convex space E_1 and a linear operator u from E into E_1 , if u(A) is bounded in E_1 , then u is continuous.

- 2. There is a linear subspace F including A such that the quotient topology in E/F is the strongest convex topology and A is a neighbourhood of 0 in F by the relative topology.
- PROOF. $1 \rightarrow 2$. Let F be a linear subspace of E generated by A, and v be a linear operator from E/F with the quotient topology into E/F with any other locally convex topology. Then $v \circ u$ is a linear operator from E into E/F where u is the canonical operator from E onto E/F, and $v \circ u(A) = 0$. Thus $v \circ u$ and so also v is continuous on account of the assumption 1. Therefore the quotient topology of E/F is the strongest convex topology. Hence, F is a topological direct factor of E. Let w be the projection from E onto F. We apply our assumption 1 to the space F with the topology defined by the system of the neighbourhood $\lambda A(\lambda > 0)$ of 0 and the linear operator w. Then w(A) is bounded in F. Therefore w is continuous, or there is a neighbourhood U of 0 in E such that $w(U) \subset A$.
- $2 \rightarrow 1$. Because of the strongest convexity of E/F, E is decomposed into F+G, where G is a topological supplementary of F. For a linear operator u from E into another E_1 , the restriction $u \mid F$ is continuous because it is bounded on A and the restriction $u \mid G$ is continuous on account of the strongest convexity of $G(\cong E/F)$. Then u is continuous.

COROLLARY. When the topology of E is $\tau(E, E')$, the conditions 1, 2 in the above Theorem are also equivalent to:

3. every linear functional bounded on A is continuous.

PROOF. $1 \rightarrow 3$. This is obvious.

 $3\rightarrow 1$. In this case, the operator u mentioned in the condition 1, is weakly continuous and then u is continuous because the topology is $\tau(E,E')$.

REMARK. When E/F with the quotient topology is metrizable and infinite dimensional, there is a linear functional which is not continuous. In the metrizable case, the strongest convexity means that the space is finite dimensional, and this is the case considered in $\lceil 3 \rceil$.

References

- [1] N. Bourbaki: Espaces Vectoriels Topologiques, Chaps. I, II, Paris, Hermann (1953); Espaces Vectoriels Topologiques, Chaps. III, IV, Paris, Hermann (1955).
- [2] H. Nakano: Topology and Linear Topological Spaces, Maruzen, Tokyo (1951).
- [3] V. L. Klee, Jr.: Boundedness and continuity of linear functionals, Duke Math. Jour., 22, no. 2 (1955).