332 [Vol. 36,

80. Some Applications of the Maximum Principle for Subharmonic Functions

By Akira SAKAI

(Comm. by K. KUNUGI, M.J.A., June 13, 1960)

Let F be hyperbolic Riemann surface and p_0 be a point fixed on F. Let $g(p, p_0)$ be the Green function of F with the pole at p_0 and $h(p, p_0)$ be conjugate to it. G_r is the domain such that $g(p, p_0) > -\log r$ with the boundary C_r . For the points \tilde{p} , \tilde{p}_0 on \tilde{F} , we define $\tilde{g}(\tilde{p}, \tilde{p}_0)$, $\tilde{h}(\tilde{p}, \tilde{p}_0)$ similarly.

We define the modulus of p, \tilde{p} by the relation

$$|p|_F = e^{-g(p,p_0)}, \quad |\widetilde{p}|_{\widetilde{F}} = e^{-\widetilde{g}(p,\widetilde{p}_0)},$$

respectively. The ordinary modulus is denoted by '| |'.

1. Let f be an analytic mapping of F into \widetilde{F} . Then $\widetilde{g}(f(p), \widetilde{p}_0)$ is harmonic except for the points at which $f(p) = \widetilde{p}_0$, and for such points $\widetilde{g}(f(p), \widetilde{p}_0) = \infty$. Therefore, $\log |f(p)|_{\widetilde{F}}$ is subharmonic on F.

Theorem 1 (Schwarz). $|f(p)|_{\widetilde{F}} \leq |p|_F$ for $p \in F$.

Proof. Consider the function

$$u(p) = \log |f(p)|_{\tilde{F}} + g(p, p_0).$$

Since $\log |f(p)|_{\widetilde{F}}$ is subharmonic and $g(p, p_0)$ is harmonic on $F' = F - p_0$, u(p) is subharmonic on F'. Let z be a local parameter in the neighborhood V of p_0 . The function $w(p) = \exp\{-\widetilde{g}(f(z), \widetilde{p}_0) - i\widetilde{h}(f(z), \widetilde{p}_0)\}$ is analytic in z. Since we have in V

 $u(z) = -\log |w(z)/z| + u_1(z)$, u_1 is harmonic in V, and w(0) = 0, u(z) is subharmonic in V. Thus u(p) is subharmonic on F.

For an arbitrary r<1, $u(p) \leq \log r$ on C_r . From the maximum principle we obtain the same inequality in G_r . As $r \to 1$, we have $u(p) \leq 0$ on F, and this proves the theorem.

Corollary 1. If f(p) is an analytic function on F such that $|f(p)| \leq M$ and $f(p_0) = 0$, then $|f(p)| \leq M |p|_F$.

This is easily seen by taking the plane domain $|w| \leq M$ as \widetilde{F} in the theorem.

Theorem 2. Let p_1, p_2, \dots, p_n be the points such that $f(p_i) = \widetilde{p}_0$, $i=1, 2, \dots, n$, then

$$|f(p_0)|_{\widetilde{F}} \leq \prod_{i=1}^n |p_i|_F.$$

Proof. We assume that $f(p_0) \neq \widetilde{p}_0$, otherwise the theorem is trivial. The function $u(p) = \log |f(p)|_{\widetilde{F}} + \sum_{i=1}^{n} g(p_i, p_i)$ is subharmonic on F.

By the argument analogous to the previous proof, we have $u(p) \leq 0$. Since, for $p = p_0$, $g(p_0, p_i) = -\log |p_i|_F$, we have the theorem.

Corollary 2. If f(p) is analytic function on F such that $|f| \leq M$ and p_1, \dots, p_n are the zeros of f, then

$$|f(p_0)| \leq M \prod_{i=1}^n |p_i|_F.$$

Theorem 3 (Blaschke). If $\{p_n\}$ is the sequence such that $f(p_n) = \widetilde{p}_0$, then

$$\sum_{n=1}^{\infty} (1 - |p_n|_F)$$

converges.

The proof is parallel to the planer case, and will be omitted.

Theorem 4 (Hadamard). Let $M(r) = \underset{C_r}{\text{Max}} |f(p)|_{\tilde{r}}$, then $\log M(r)$ is the convex function of $\log r$.

Proof. Let r_1 and r_2 be such that $0 < r_1 < r_2 < 1$. The function

$$u(p) = \frac{\log |f(p)|_{\tilde{r}} - \log M(r_1)}{\log M(r_2) - \log M(r_1)}$$

is subharmonic on F and ≤ 0 on C_{r_1} , and ≤ 1 on C_{r_2} . Hence, for the harmonic function

$$h(p) = \frac{\log |p|_F - \log r_1}{\log r_2 - \log r_1}$$

 $u(p) \leq h(p)$ in $G_{r_2} - G_{r_1}$. This proves the theorem.

2. In the next place, we restrict ourselves to the class \mathfrak{F} of functions f which are analytic on F and whose moduli are single-valued. For simplicity, $|p|_F$ is denoted by r.

Lemma 1. If $|f| \leq M$, then

$$\frac{M(|f(p_0)| - Mr)}{M - r|f(p_0)|} \leq f(p) \leq \frac{M(|f(p_0)| + Mr)}{M + r|f(p_0)|}$$

in G_r , r<1.

The proof is immediate by Corollary 2.

Theorem 5 (Dieudonné). Let $|f(p)| \le M$ and $f(p_0) = 0$. If $d_0 = \lim_{n \to \infty} |f(p)|/r = 1$, then f is univalent in

$$r<rac{1}{M+\sqrt{M^2-1}}.$$

Proof. Assume that there exist p_1 , $p_2(p_1 + p_2)$, $r_1 \le r_2 = \rho$ such that $f(p_1) = f(p_2) = \alpha$. Then the function $G(p) = M^2(\alpha - f(p))/(M^2 - \overline{\alpha}f(p))$ belongs to \mathfrak{F} , and $|G(p)| \le M$, and $|G(p_0)| = \alpha$, $|G(p_0)| = 0$.

Hence, from Theorem 2, we have

$$|\alpha| = |G(p_0)| \leq Mr_1 r_2 \leq M\rho^2. \tag{1}$$

Now the function F(p)=f(p)/w(p) belongs to \mathfrak{F} and $|F(p)| \leq M$ by Theorem 1. Hence, from Lemma 1, we have

$$rac{M(|F(p_0)|-Mr)}{M-r\,|F(p_0)|}\! \le \! rac{|f(p)|}{r}.$$

Since $F(p_0)=d_0=1$, we have $|f(p)| \ge Mr(1-Mr)/(M-r)$. At $p=p_2$

$$|\alpha| = |f(p_2)| \ge \frac{M\rho(1-M\rho)}{M-\rho}.$$
 (2)

(1), (2) show

$$\rho \geq \frac{1}{M + \sqrt{M^2 - 1}}.$$

We shall now generalize Theorem 3.

Theorem 6 (Ostrwski). Let $\{p_n\}$ be zeros of $f \in \mathfrak{F}$. The necessary and sufficient condition for $\sum_{n=1}^{\infty} (1-r_n)$ to converge is that there exists a positive constant M such that for all r, r < 1,

$$\int\limits_{C_r} \log |f(re^{i\theta})| \, d\theta \leqq M.$$

Proof. We can assume $f(p_0)=1$. For if $f(p_0)=0$ and its order is n, then setting $F_1(p)=f(p)/(w(p))^n$ and $F(p)=F_1(p)/F_1(p_0)$, we obtain $F \in \mathfrak{F}$ and $F(p_0)=1$.

Consider the function

$$h(p) = \log |f(p)| + \sum_{p_n \in G_r} g_r(p, p_n),$$

where g_r denotes Green function of G_r . Since h(p) is harmonic, $f(p_0)=1$ and $g_r(p, p_n)=g(p, p_n)+\log r$, we have

$$\sum_{r_n < r} \log r / r_n = \frac{1}{2\pi} \int\limits_{C} \log \left| f(re^{i\theta}) \right| d\theta.$$

The analogous argument to the planer case concludes the theorem.