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80. Some Applications of the Maximum Principle
for Subharmonic Functions

By Akira SAKAI
(Comm. by K. KUNUGI, M.J.A., June 18, 1960)

Let F be hyperbolic Riemann surface and p, be a point fixed on
F. Let g(p, p,) be the Green function of F' with the pole at p, and
h(p, ;) be conjugate to it. G, is the domain such that g(p, p,) > —log r
with the boundary C,. For the points B, B, on F, we define §(®, Do),
(D, D,) similarly.

We define the modulus of p,% by the relation

|p|F=e“”(”’p"), lﬁli’:e_&p’ﬁo)v

respectively. The ordinary modulus is denoted by ‘| |’.

1. Let f be an analytic mapping of F into #. Then §(f(p), Do)
is harmonic except for the points at which f(p)=7p, and for such
points G(f(p), Dy)=oc. Therefore, log|f(p)|# is subharmonic on F.

Theorem 1 (Schwarz). |f(p)|#=|p|r for peF.

Proof. Consider the function

u(p)=log | () |5 +9(D, o).
Since log | f(p)|# is subharmonic and g(p, p,) is harmonic on F'=F—p,,
u(p) is subharmonic on F’/. Let z be a local parameter in the neigh-
borhood V of p,. The function w(p)=exp{—g(f(2), Bo)—ik(f(2), Do)} is
analytic in 2. Since we have in V
u(z)= —log | w(z)/z| +u,(2), wu, is harmonic in V,

and w(0)=0, u(z) is subharmonic in V. Thus u(p) is subharmonic on
F.

For an arbitrary r<1, u(p)<logr on C,. From the maximum
principle we obtain the same inequality in G,. As r—1, we have
u(p)<<0 on F, and this proves the theorem.

Corollary 1. If f(p) is an analytic function on F such that
| f(P)|=M and f(p)=0, then |f(p)|=M|p|s.

This is easily seen by taking the plane domain |w|<M as Fin
the theorem.

Theorem 2. Let p,, Ps,-+, D, be the points such that f(p,)=7D,,
1=1,2,--+,m, then

[ £(Po) | églpilﬁ"
Proof. We assume that f(p,)=D, otherwise the theorem is

trivial. The function u(p)=log|f(»)|# +¢Z: 9(p, p,) is subharmonic on F,
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By the argument analogous to the previous proof, we have u(p)=0.
Since, for p=n,, 9(v,, v;.)=—log|p;|r, we have the theorem.

Corollary 2. If f(p) is analytic function on F such that | f|<M
and Py, D, are the zeros of f, then

| £ | =M T | 5.

Theorem 3 (Blaschke). If {p,} is the sequence such that f(p,)="2,,
then

S a-In.l)
converges.
The proof is parallel to the planer case, and will be omitted.
Theorem 4 (Hadamard). Let M ('r)——-Mc?,xl f(®)|%, then log M(r)
18 the convex fumnction of log r. "
Proof. Let r, and 7, be such that 0<r,<r,<1. The function
u(p)= log | f(p) |5 —log M (r,)
log M(r,)—log M(r,)
is subharmonic on F' and <0 on C,, and =1 on C,,. Hence, for the
harmonic function

h(p) =108 1P|-—log 7,
log r,—log 7,
w(p)<h(p) in G,,—G,,. This proves the theorem.

2. In the next place, we restrict ourselves to the class & of func-
tions f which are analytic on F' and whose moduli are single-valued.
For simplicity, |p|r is denoted by 7.

Lemma 1. If | f|<M, then

M(| f(®o) | — M) <fp) < M(| f(py) |+ M)
M—r|f(p)| — — MAr|f(po)]

wm G, r<l,

The proof is immediate by Corollary 2.

Theorem 5 (Dieudonné). Let |f(p)|=M and f(p,)=0. If d,=
lil? | f(p)|/r=1, then f is univalent in

1

S M=

Proof. Assume that there exist p;, p.(p, 3 ps, 71.=7,=p) such that
f(@)=r(p)=a. Then the function G(p)=DM*(a—f(0)/(M*—af(p))
belongs to &, and |G(p)|<M, and G(p,)=a, G(P,)=G(p,)=0.

Hence, from Theorem 2, we have

la|=|G(py) | = Mrr, < Mp®. (1)

Now the function F'(p)=f(p)/w(p) belongs to F and |F(p)|<M by
Theorem 1. Hence, from Lemma 1, we have

r
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M(F(py)|~Mr) _|fw)|

M—r|F(p)| — r
Since F'(p,)=d,=1, we have | f(p)|=Mr(Q1—Mr)|(M—7r). At p=p,
|al =1 /(0] = HEL=HE), (2)
—p
(1), (2) show
1
S TE) o

We shall now generalize Theorem 3.
Theorem 6 (Ostrwski). Let {p,} be zeros of fe@. The necessary

and sufficient condition for ﬁ (1—r,) to converge is that there exists
n=1

a positive constant M such that for all r, r<1,

flog]f(re“)l do< M.
C.

Proof. We can assume f(p,)=1. For if f(p,)=0 and its order
is m, then setting F(p)=f(p)/(w(p))" and F(p)=F(p)/F(p,), we obtain
FefF and F(p,)=1.

Consider the function

h(p)=log | f(»)| + p% 9.(0, ),

where g, denotes Green function of G,. Since h(p) is harmonie, f(p,)=1
and ¢,(p, »,)=9(p, p,)+log r, we have

r”2<rlog 'r/rn=—2lﬂ—b/‘10g|f(re”)|d0.

The analogous argument to the planer case concludes the theorem.



