392 [Vol. 36,

94. On Osima's Blocks of Group Characters

By Kenzo IIZUKA

Department of Mathematics, Kumamoto University, Kumamoto, Japan (Comm. by Z. Suetuna, M.J.A., July 12, 1960)

Let \mathfrak{G} be a group of finite order g and p be a fixed rational prime. M. Osima, in his earlier paper [4], introduced a concept of blocks of characters with regard to a subgroup \mathfrak{F} of \mathfrak{G} (" \mathfrak{F} -blocks"). Let \mathfrak{F}_0 be the maximal normal subgroup of \mathfrak{G} contained in \mathfrak{F} . It is well known that the irreducible characters" $\phi_1, \phi_2, \cdots, \phi_k$ of \mathfrak{F}_0 are distributed into the classes $\mathfrak{B}_1, \mathfrak{B}_2, \cdots, \mathfrak{B}_s$ of associated characters in \mathfrak{G} . If $\mathfrak{B}'_1, \mathfrak{B}'_2, \cdots, \mathfrak{B}'_s$ are the classes of associated irreducible characters of \mathfrak{F}_0 in \mathfrak{F} , then each class \mathfrak{B}_s is a collection of classes \mathfrak{B}'_s . Let $\chi_1, \chi_2, \cdots, \chi_n$ be the irreducible characters of \mathfrak{G} and $\theta_1, \theta_2, \cdots, \theta_h$ be those of \mathfrak{F} . As is well known, there corresponds to each character χ_i exactly one class \mathfrak{B}_s such that

$$\chi_i(H_0) = s_{i\sigma} \sum_{\phi_{,\mu} \in \mathfrak{Y}_{\sigma}} \phi_{\mu}(H_0)$$
 $(H_0 \in \mathfrak{F}_0)$

where $s_{i\sigma}$ is a positive rational integer. If a class \mathfrak{B}_{σ} corresponds to a character χ_i in this sense, we say that χ_i belongs to \mathfrak{B}_{σ} by counting χ_i in \mathfrak{B}_{σ} . We also say that θ_{λ} belongs to \mathfrak{B}_{σ} if θ_{λ} belongs to \mathfrak{B}_{σ}' contained in \mathfrak{B}_{σ} . Then the classes \mathfrak{B}_{σ} are the \mathfrak{F} -blocks of \mathfrak{F} in Osima's sense. From the definition, we see that χ_i and χ_j belong to the same \mathfrak{F} -block of \mathfrak{F} if and only if $\chi_i(H_0)/\chi_i(1) = \chi_j(H_0)/\chi_j(1)$ for all elements H_0 of \mathfrak{F}_0 [4], where 1 denotes the identity of \mathfrak{F} .

In the following, "block" of a group will always mean block with regard to a p-Sylow subgroup of the group. While Brauer's blocks for a rational prime q will be referred always as q-blocks. The purpose of this paper is to consider a connection between blocks of \mathfrak{G} and the blocks of the normalizer $\mathfrak{R}(R)$ of a p-regular element R in \mathfrak{G} .

The author wishes to thank Prof. M. Osima for several helpful suggestions.

1. Let \mathfrak{P} be a p-Sylow subgroup of \mathfrak{G} and \mathfrak{P}_0 be the maximal normal p-subgroup of \mathfrak{G} . We shall denote by $\mathfrak{B}_1, \mathfrak{B}_2, \cdots, \mathfrak{B}_s$ the blocks of \mathfrak{G} with regard to \mathfrak{P} . For each \mathfrak{B}_s we set

where e_i is the primitive idempotent of the center Z of the group ring of \mathfrak{G} over the field Ω of g-th roots of unity which belongs to χ_i . Let K_1, K_2, \dots, K_n be the classes of conjugate elements in \mathfrak{G} and G_1 ,

¹⁾ The term "irreducible character" will always mean absolutely irreducible ordinary character.

 G_2, \dots, G_n be a complete system of representatives for the classes. If we interprete each class K_{ν} as the sum of all its elements, then we may write

$$\Delta_{\sigma} = \sum_{\nu} a_{\nu}^{\sigma} K_{\nu},$$

where $a_{\nu}^{\sigma} = \frac{1}{g} \sum_{\chi_i \in \mathfrak{B}_{\sigma}} \chi_i(1) \overline{\chi}_i(G_{\nu})$. By Frobenius' theorem on induced characters, we have the following:

Lemma 1. 1) $a_{\nu}^{\sigma}=0$ for all classes K_{ν} which are not contained in \mathfrak{P}_{0} . 2) All $p^{a_{0}}a_{\nu}^{\sigma}$ are algebraic integers, where $p^{a_{0}}$ is the order of \mathfrak{P}_{0} .

The converse of this lemma also holds in the following form: If, for a set \mathfrak{B} of characters χ_i , the idempotent $\Delta = \sum_{\chi_i \in \mathfrak{B}} e_i$ of Z is expressed as a linear combination of classes K_i contained in \mathfrak{P}_0 , then \mathfrak{B} is a collection of blocks \mathfrak{B}_a of \mathfrak{G} .

2. Let q be an arbitrarily fixed rational prime, different from p, and Q be an arbitrarily given element of \mathfrak{G} whose order is a power of q. It follows from Lemma 1 that each block \mathfrak{B}_{τ} of \mathfrak{G} is a collection of q-blocks B_{τ} of \mathfrak{G} . Let $B^{(\tau)}(Q)$ be the collection of q-blocks of the normalizer $\mathfrak{N}(Q)$ of Q in \mathfrak{G} which determine a q-block B_{τ} of \mathfrak{G} . We set $\mathfrak{B}^{(\tau)}(Q) = \bigcup_{B_{\tau} \subseteq \mathfrak{B}_{\sigma}} B^{(\tau)}(Q)$. By (4.16) in $[2]^3$ and Lemma 1, we have the following:

Lemma 2. Each $\mathfrak{B}^{(a)}(Q)$ is a collection of blocks $\widehat{\mathfrak{B}}_{b}$ of $\mathfrak{N}(Q)$.

Let now R be a p-regular element of \mathfrak{G} whose order is a product of powers of distinct rational primes q_1, q_2, \dots, q_r . As is well known, R is decomposed uniquely into

(2.1)
$$R = Q_1 Q_2 \cdots Q_r$$
 $(Q_i Q_j = Q_j Q_i),$

where Q_i is the q_i -factor of R. Let a block \mathfrak{B}_{σ} of \mathfrak{G} be given arbitrarily. First, applying Lemma 2 for $Q = Q_1$, \mathfrak{B}_{σ} and \mathfrak{G} , we have a collection $\mathfrak{B}^{(\sigma)}(Q_1)$ of blocks of $\mathfrak{N}(Q_1)$. Secondly, working similarly for $Q = Q_2$, $\mathfrak{B}_{\sigma} = \mathfrak{B}^{(\sigma)}(Q_1)$ and $\mathfrak{G} = \mathfrak{N}(Q_1)$, we have a collection $\mathfrak{B}^{(\sigma)}(Q_1, Q_2)$ of blocks of $\mathfrak{N}(Q_1Q_2)$. Continuing this process, we have finally a collection $\mathfrak{B}^{(\sigma)} = \mathfrak{B}^{(\sigma)}(Q_1, Q_2, \cdots, Q_r)$ of blocks \mathfrak{B}_{ρ} of $\mathfrak{G} = \mathfrak{N}(R)$. If a block \mathfrak{B}_{ρ} of \mathfrak{G} belongs to the collection $\mathfrak{B}^{(\sigma)}$, we say that the block \mathfrak{B}_{σ} of \mathfrak{G} is determined by the block \mathfrak{B}_{ρ} of \mathfrak{G} . It follows from Theorem 1 in §3 that $\mathfrak{B}^{(\sigma)}$ is independent of the order of Q_1, Q_2, \cdots, Q_r .

3. Let R be a p-regular element of \mathfrak{G} and S(R) be the p-regular section ("Oberklasse")⁴⁾ of R in \mathfrak{G} , i.e. the set of all elements of \mathfrak{G}

²⁾ If α is a complex number, we denote by $\overline{\alpha}$ the conjugate complex number of

³⁾ Cf. also [7, p. 181].

⁴⁾ Cf. [9].

whose p-regular factors are conjugate to R in \mathfrak{G} . Let $\widetilde{K}_1, \widetilde{K}_2, \cdots, \widetilde{K}_v$ be the classes of conjugate elements in $\widetilde{\mathfrak{G}} = \mathfrak{R}(R)$ whose orders are powers of p. We may assume that the maximal normal p-subgroup $\widetilde{\mathfrak{P}}_0$ of $\widetilde{\mathfrak{G}}$ is the union of the first u classes \widetilde{K}_a . We may also assume that $K_a \supseteq R\widetilde{K}_a, \ \alpha = 1, 2, \cdots, \ v; \ S(R)$ is the union of K_1, K_2, \cdots, K_v . We denote by $S_0(R)$ the union of K_1, K_2, \cdots, K_u and denote by $S_1(R)$ the union of $K_{u+1}, K_{u+2}, \cdots, K_v; \ S(R) = S_0(R) \cup S_1(R)$.

Let $\widetilde{\mathfrak{B}}_1, \widetilde{\mathfrak{B}}_2, \cdots, \widetilde{\mathfrak{B}}_{\widetilde{s}}$ be the blocks of $\widetilde{\mathfrak{B}}$ with regard to a p-Sylow subgroup $\widetilde{\mathfrak{P}}$ of $\widetilde{\mathfrak{B}}$. Let, for each block \mathfrak{B}_{σ} of \mathfrak{B} , \mathcal{A}_{σ} be given by (1.1). Similarly, for each block $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{B}}$, we define an idempotent $\widetilde{\mathcal{A}}_{\rho}$ of the center \widetilde{Z} of the group ring of $\widetilde{\mathfrak{B}}$ over Ω . We set $\widetilde{\mathcal{A}}^{(\sigma)} = \sum_{\widetilde{\mathfrak{B}}_{\rho} \subseteq \widetilde{\mathfrak{B}}^{(\sigma)}} \widetilde{\mathcal{A}}_{\rho}$, where $\widetilde{\mathfrak{B}}^{(\sigma)}$ is the collection of blocks $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{B}}$ which determine \mathfrak{B}_{σ} , and set

(3.1)
$$K_{\mu}\Delta_{\sigma} = \sum_{\nu=1}^{n} \alpha_{\mu\nu}^{\sigma} K_{\nu} \qquad (\mu = 1, 2, \dots, n).$$

Then, by Theorem 2 in [3] and Lemmas 1 and 2, we obtain the following:

Theorem 1. For $\alpha = 1, 2, \dots, u$, we have

$$K_{lpha} \Delta_{\sigma} = \sum_{\beta=1}^{u} a_{lpha\beta}^{\sigma} K_{eta}$$

and

$$\widetilde{K}_{\alpha}\widetilde{\mathcal{J}}^{(\sigma)} = \sum_{\beta=1}^{u} \alpha_{\alpha\beta}^{\sigma} \widetilde{K}_{\beta}.$$

For $\alpha=u+1, u+2, \dots, v$, we have

$$K_{\alpha} \mathcal{A}_{\sigma} = \sum_{\beta=u+1}^{v} a_{\alpha\beta}^{\sigma} K_{\beta}$$

and

$$\widetilde{K}_{\scriptscriptstyle{lpha}}\widetilde{{\mathscr A}}^{\scriptscriptstyle{(\sigma)}} = \sum_{\scriptscriptstyle{eta=u+1}}^{v} a_{\scriptscriptstyle{lphaeta}}^{\sigma} \widetilde{K}_{\scriptscriptstyle{eta}}.$$

Let $\widetilde{\chi}_1, \widetilde{\chi}_2, \dots, \widetilde{\chi}_{\widetilde{n}}$ be the irreducible characters of $\widetilde{\mathfrak{G}}$ and $\widetilde{\theta}_1, \widetilde{\theta}_2, \dots$ $\widetilde{\theta}_{\widetilde{k}}$ be those of $\widetilde{\mathfrak{P}}$. We set

(3.2)
$$\widetilde{\chi}_{j}(P) = \sum_{i=1}^{\widetilde{h}} \widetilde{r}_{j\lambda} \widetilde{\theta}_{\lambda}(P) \qquad (P \in \widetilde{\mathfrak{P}})$$

and

(3.3)
$$\chi_{i}(RP) = \sum_{\lambda=1}^{\widetilde{h}} r_{i\lambda}^{R} \widetilde{\theta}_{\lambda}(P) \qquad (P \in \widetilde{\mathfrak{P}})$$

 $\lceil 5, 6 \rceil$. Setting

(3.4)
$$\widetilde{w}_{\lambda\mu} = \sum_{j=1}^{\widetilde{n}} \widetilde{r}_{j\lambda} \widetilde{r}_{j\mu} \qquad (\lambda, \mu = 1, 2, \dots, \widetilde{h}),$$

by Theorem 1 we have

In particular,

$$\sum_{\chi_i \in \mathfrak{B}_{\sigma}} r_{i\lambda}^R \overline{r}_{i\lambda}^R = 0 \qquad \qquad (\widetilde{\theta}_{\lambda} \notin \widetilde{\mathfrak{B}}^{(\sigma)}),$$

hence

$$r_{ij}^{R} = 0$$
 $(\chi_{i} \in \mathfrak{B}_{\sigma}, \ \widetilde{\theta}_{i} \notin \widetilde{\mathfrak{B}}^{(\sigma)}).$

Thus we obtain the following theorem.50

Theorem 2. If an irreducible character $\widetilde{\theta}_i$ of $\widetilde{\mathfrak{P}}$ belongs to a block $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{G}}$, then $r_{i,i}^R$ can be different from zero only for irreducible characters χ_i of \mathfrak{G} which belong to the block \mathfrak{B}_{ρ} of $\widetilde{\mathfrak{G}}$ determined by the block $\widetilde{\mathfrak{B}}_{\rho}$ of $\widetilde{\mathfrak{G}}$.

By Theorem 1, we also have the following refinements of some of the orthogonality relations for group characters.

Theorem 3. 1) If two elements L and M of \mathfrak{G} belong to different p-regular sections of \mathfrak{G} , then

$$(3.6) \qquad \qquad \sum_{\chi_i \in \mathfrak{B}_{\sigma}} \chi_i(L) \overline{\chi}_i(M) = 0$$

for each block B, of S [8].69

2) If L and M belong to the same p-regular section S(R) of \mathfrak{G} and if exactly one of the p-factors of them belongs to the maximal normal p-subgroup of $\mathfrak{R}(R)$, then (3.6) also holds for each block \mathfrak{B}_{σ} of \mathfrak{G} .

Theorem 4. If χ_i and χ_j are two irreducible characters of \mathfrak{G} which belong to different blocks of \mathfrak{G} , then

$$\sum_{G \in S_0(R)} \chi_i(G) \overline{\chi}_j(G) = 0$$

and

$$\sum_{G \in S_1(R)} \chi_i(G) \overline{\chi}_j(G) = 0$$

for each p-regular section S(R) of \mathfrak{G}^{7}

References

- [1] R. Brauer: On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U. S. A., 32, 215-219 (1946).
- [2] —: Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr., 72, 25-46 (1959).
- [3] K. Iizuka: On Brauer's theorem on sections in the theory of blocks of group characters, forthcoming.
- [4] M. Osima: On the representations of groups of finite order, Math. Jour Okayama Univ., 1, 33-61 (1952).

⁵⁾ Prof. M. Osima has pointed out the fact that the theorem follows also from Theorem 1 in $\lceil 1 \rceil$.

⁶⁾ We have a refinement of this result, which is a dual theorem of Theorem 2 in $\lceil 1 \rceil$.

⁷⁾ This theorem is an inprovement of a result in [8].

- [5] M. Osima: On the induced characters of a group, Proc. Japan Acad., 28, 243-248
- [6] —: On the induced characters of groups of finite order, Math. Jour. Okayama Univ., 3, 47-64 (1953).
- [7] —: Notes on blocks of group characters, ibid., 4, 175-188 (1955).
 [8] —: On some properties of group characters II, forthcoming.
- [9] P. Roquette: Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe, Crelles Jour., 190, 148-168 (1952).